Yellow as the sunrise

March 21, 2016
Chemists from the University of Vienna around Annette Rompel have analysed the structure of the enzyme in the leaves of Coreopsis. Credit: Annette Rompel

What is it that walnut leaves, mushrooms and Coreopsis have in common? An enzyme that is also responsible for the browning reaction in bananas or apples is present in all of them in large amounts. For the first time, chemists from the University of Vienna around Annette Rompel have analyzed the structure of the enzyme in the leaves of Coreopsis.

Who doesn't know the brown colour of a sliced apple or overripe fruit? Annette Rompel, Head of the Department of Biophysical Chemistry at the University of Vienna, knows this phenomenon very well. Since more than 20 years, she has studied the tyrosinase, an that does not only exist in plants but also makes the human skin become brown.

Unknown role of the enzyme

The "browning" is caused by a number of complex polyphenols. These are secondary plant metabolites that occur, e.g. as health-promoting colouring and flavouring components. Tyrosinase, in turn, is a metal-containing enzyme that catalyses the hydroxylation and oxidation of phenols. "And this is the reason for the discolouration", explains the chemist.

In addition to tyrosinase, a second enzyme called catechol oxidase is capable of oxidising diphenols such as catechol. "Thus, both enzymes are responsible for the browning reaction", says Rompel. The first author Christian Molitor stresses: "The actual physiological role of the enzymes in various cells as well as their natural substrates are still largely unknown."

Mushrooms, walnut leaves and Coreopsis

The chemists have addressed this question. Having successfully characterised the enzymes in mushrooms and walnut leaves, the researchers now focus on another plant: Coreopsis—a popular garden plant whose flowers resemble those of sunflowers with their radiant yellow blossoms also found in the University's greenhouse in Althanstrasse. "This is mainly due to the excellent work of the gardeners Thomas Joch and Andreas Schröfl", says Rompel who praises the employees "with the green thumb".

Where does the yellow colour come from?

"We have chosen Coreopsis for our research, because the "browning enzyme" is found in the petals in high concentrations", says the chemist. The enzyme—in this case a catechol oxidase—is responsible for the conversion of certain flower pigments. "Since the petal dyes are called aurones, the enzyme received the name aurone synthase", explains the chemist.

A new classification must be defined

Her team comprising Christian Molitor, Stephan Mauracher and Cornelia Kaintz managed to characterise this enzyme for the first time: In the paper recently published in PNAS, the researchers presented the first crystal structure of aurone synthase in both a latent and an active form. "In a third step, we had an inactive form (through sulfonation) isolated and crystallised", says Molitor, adding: "With regard to the crystal structures of the latent, active and inactive form we achieved results that provide further insight into the complex mechanism of activation."

With their work, the researchers from the University of Vienna also describe a new mechanism for the catalytic cycle of plant polyphenol oxidases, i.e. the "browning process" in plants. "Our results show that the general classification of tyrosinase and catechol oxidase must be reconsidered", says first author Molitor.

Healthy application?

The research results could lead to applications in various disciplines, among others in biotechnological, pharmaceutical or agricultural processes. "Based on our results, you could—by controlling the enzymes —, for example, increase the content of bioactive substances in fruit and vegetables", explains Rompel and smiles: "Fruit and vegetables would then become even healthier."

Explore further: No need to get browned off: Edible films keep fruit fresh

More information: Christian Molitor et al. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1523575113

Related Stories

No more brown apples?

November 11, 2015

The longer an apple retains its beautiful colour, the better it is – especially for the food industry. Therefore, the industry works intensely on inhibiting the "browning" of fruits. Chemists of the University of Vienna ...

Banana peels can help identify the stages of melanoma

February 8, 2016

Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.

Tyrosinase inhibitors from terrestrial and marine resources

February 18, 2016

Tyrosinase is a multifunctional copper-containing enzyme widely distributed in microorganisms as well as plants and animals which has a primordial role in melanin biosynthesis thus impacting on skin color and pigmentation. ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Electron microscopy reveals how vitamin A enters the cell

August 25, 2016

Using a new, lightning-fast camera paired with an electron microscope, Columbia University Medical Center (CUMC) scientists have captured images of one of the smallest proteins in our cells to be "seen" with a microscope.

Hitching a ride: Misfiring drugs hit the wrong targets

August 25, 2016

It probably isn't surprising to read that pharmaceutical drugs don't always do what they're supposed to. Adverse side effects are a well-known phenomenon and something many of us will have experienced when taking medicines.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.