Study of tundra soil demonstrates vulnerability of ecosystem to climate warming

February 22, 2016
Study of tundra soil demonstrates vulnerability of ecosystem to climate warming

Findings from one of the first comprehensive field studies by a collaborative team of researchers demonstrate the active layer microbiome of tundra soil was significantly altered after only 1.5 years of experimental warming—a rapid response demonstrating high sensitivity of this ecosystem to warming. Collectively, the results of this study suggest the vulnerability of permafrost ecosystem carbon to climate warming and the significance of microbial feedbacks in mediating this vulnerability.

University of Oklahoma team members include Jizhong Zhou, Kai Xue, Mengting M. Yuan, Zhou J. Shi, Yujia Qin, Ye Deng Lei Cheng, Liyou Wu, Zhili He and Joy D. Van Nostrand from the Institute for Environmental Genomics, plus Yiqi Luo from the Department of Microbiology and Plant Biology in the OU College of Arts and Sciences. Zhou is also affiliated with Tsinghua University and Lawrence Berkeley National Laboratory.

"How microorganisms respond to warming—speed, direction, magnitudes—is critical to determine the feedback of the ecosystem to climate warming," said Zhou. "Based on the first field warming experiment to degrade surface permafrost, we used integrated metagenomics technologies to demonstrate the rapid response of the permafrost microbial communities to climate warming."

The study provides an understanding of microbial responses to climate warming and demonstrates that warming stimulates aerobic respiration and anaerobic decomposition; nitrous oxide and methane emissions from anaerobic processes that likely amplify positive carbon feedback to warming; and warming greatly enhances nutrient cycling processes, such as nitrogen mineralization, nitrogen fixation and phosphorus utilization, which promote increases in plant growth and potentially dampens positive feedback.

The northern permafrost stores nearly 50 percent of the global soil organic carbon. The permafrost has been recognized as highly responsive to climate change, yet very few studies have examined microbial responses to climate warming in tundra ecosystems in the field. Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood indicators of greenhouse gas emissions in a warmer world.

Experimental results reported in this study were derived from the active layer of the Alaskan tundra soil. This research indicates that the soil carbon is highly vulnerable to and the vulnerability is determined by a set of complex microbial feedbacks to the temperature increase.

A paper on this study has been published on the Nature Climate Change website.

Explore further: Tundra study uncovers impact of climate warming in the Arctic

More information: Kai Xue et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming, Nature Climate Change (2016). DOI: 10.1038/nclimate2940

Related Stories

USGS projects large loss of Alaska permafrost by 2100

November 30, 2015

Using statistically modeled maps drawn from satellite data and other sources, U.S. Geological Survey scientists have projected that the near-surface permafrost that presently underlies 38 percent of boreal and arctic Alaska ...

Permafrost thaw exacerbates climate change

March 21, 2014

The climate is warming in the arctic at twice the rate of the rest of the globe creating a longer growing season and increased plant growth, which captures atmospheric carbon, and thawing permafrost, which releases carbon ...

Large and increasing methane emissions from northern lakes

January 4, 2016

Methane is increasing in the atmosphere, but many sources are poorly understood. Lakes at high northern latitudes are such a source. However, this may change with a new study published in Nature Geoscience. By compiling previously ...

Recommended for you

Entire Himalayan arc can produce large earthquakes

October 26, 2016

The main fault at the foot of the Himalayan mountains can likely generate destructive, major earthquakes along its entire 2,400-kilometer (1,500-mile) length, a new study finds. Combining historical documents with new geologic ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Feb 22, 2016
Maybe they should change the name of Permafrost to WasOncePermafrost
3 / 5 (2) Feb 25, 2016
When these soils release their CO2 and CH4, we are in for it, and it may be irreversible in Human terms.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.