Newly discovered HIV genome modification may put a twist on vaccine and drug design

February 22, 2016

Researchers at University of California, San Diego School of Medicine have discovered that HIV infection of human immune cells triggers a massive increase in methylation, a chemical modification, to both human and viral RNA, aiding replication of the virus. The study, published February 22, 2016 in Nature Microbiology, identifies a new mechanism for controlling HIV replication and its interaction with the host immune system.

"We and other colleagues at pharmaceutical companies have worked over the years to develop drugs targeting HIV's genetic material, its RNA, but we never made it to the clinic," said senior author Tariq Rana, PhD, professor of pediatrics at UC San Diego School of Medicine. "Now we know why—we were developing drugs using RNA targets that didn't have these modifications, when in reality the RNA was different."

In human cells, RNA is the genetic material that carries instructions from the DNA in a cell's nucleus out to the cytoplasm, where molecular machinery uses those instructions to build proteins. In contrast, HIV's entire genome is made up of RNA, not DNA. The virus hijacks its host's cellular machinery to translate its RNA to proteins.

Cells can chemically modify RNA to control or alter its function. One of these modifications, known as N6-methyladenosine (m6A), is common in humans and other organisms. But little was known about the role m6A plays in the human immune system, or in the interactions between our cells and invading pathogens, such as HIV.

In the study, Rana's team discovered m6A modifications in HIV RNA for the first time. They also examined m6A's effect on function in both HIV and human host RNA during infection of .

"M6A had always been considered a steady modification of cellular RNA. Instead, it turned out to be extremely dynamic and highly responsive to external stimuli, such as viral infections" said Gianluigi Lichinchi, a graduate student in Rana's lab and first author of the study. "In the future, these findings could aid in improving the design and efficacy of HIV/AIDS vaccines."

One of the proteins encoded by HIV's RNA genome is Rev. After Rev proteins are built in the human host cell's cytoplasm, they move back into the nucleus, where they assemble at a particular point on HIV RNA called the Rev responsive element (RRE). There, Rev helps transport newly produced HIV RNA transcripts into the host cytoplasm. This is an essential step in viral replication.

The team determined that m6A modification of both human and viral RNA influences the interaction between the HIV Rev protein and the RNA RRE. When the researchers silenced the enzyme that removes m6A from RNA, HIV replication increased. Conversely, when they silenced the enzyme that adds m6A to RNA, HIV replication decreased—a finding the researchers say could be exploited pharmacologically to combat the infection.

"The HIV field has missed this modification in physiological RNA structure and HIV genome for more than 30 years," Rana said. "I will not be surprised if other viruses with RNA genomes also exploit this m6A modification mechanism to evade immune surveillance and control their replication in cells. These viruses include, for example, influenza, Hepatitis C, Ebola and Zika, just to name a few."

Explore further: Study compares tests to detect acute HIV infection

More information: Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells, Nature Microbiology, DOI: 10.1038/nmicrobiol.2016.11

Related Stories

Study compares tests to detect acute HIV infection

February 16, 2016

In a study appearing in the February 16 issue of JAMA, Philip J. Peters, M.D., of the Centers for Disease Control and Prevention, Atlanta, and colleagues evaluated the performance of an HIV antigen/antibody (Ag/Ab) combination ...

Epigenetic 'switch' regulates RNA-protein interactions

February 25, 2015

Chemical changes - also known as epigenetic modifications - to messenger RNA (mRNA) are thought to play an important role in gene expression, and have recently been found to affect biological processes such as circadian clock ...

Recommended for you

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.