Hubble image: The sleeping giant

February 11, 2016
The elliptical galaxy NGC 4889 in front of hundreds of background galaxies, and deeply embedded within the Coma galaxy cluster. Well-hidden from human eyes, there is a gigantic supermassive black hole at the center of the galaxy. Credit: NASA & ESA

The placid appearance of NGC 4889 can fool the unsuspecting observer. But the elliptical galaxy, pictured in this new image from the NASA/ESA Hubble Space Telescope, harbours a dark secret. At its heart lurks one of the most massive black holes ever discovered.

Located about 300 million light-years away in the Coma Cluster, the giant elliptical galaxy NGC 4889, the brightest and largest galaxy in this image, is home to a record-breaking . Twenty-one billion times the mass of the Sun, this black hole has an - the surface at which even light cannot escape its gravitational grasp - with a diameter of approximately 130 billion kilometres. This is about 15 times the diameter of Neptune's orbit from the Sun. By comparison, the supermassive black hole at the centre of our galaxy, the Milky Way, is believed to have a mass about four million times that of the Sun and an event horizon just one fifth the orbit of Mercury.

But the time when NGC 4889's black hole was swallowing stars and devouring dust is past. Astronomers believe that the gigantic black hole has stopped feeding, and is currently resting after feasting on NGC 4889's cosmic cuisine. The environment within the galaxy is now so peaceful that stars are forming from its remaining gas and orbiting undisturbed around the black hole.

When it was active, NGC 4889's supermassive black hole was fuelled by the process of hot accretion. When galactic material—such as gas, dust and other debris—slowly fell inwards towards the black hole, it accumulated and formed an . Orbiting the black hole, this spinning disc of material was accelerated by the black hole's immense gravitational pull and heated to millions of degrees. This heated material also expelled gigantic and very energetic jets. During its active period, astronomers would have classified NGC 4889 as a quasarand the disc around the supermassive black hole would have emitted up to a thousand times the energy output of the Milky Way.

The accretion disc sustained the supermassive black hole's appetite until the nearby supply of galactic material was exhausted. Now, napping quietly as it waits for its next celestial snack, the supermassive black hole is dormant. However its existence allows astronomers to further their knowledge of how and where quasars, these still mysterious and elusive objects, formed in the early days of the Universe.

Although it is impossible to directly observe a black hole—as light cannot escape its gravitational pull—its mass can be indirectly determined. Using instruments on the Keck II Observatory and Gemini North Telescope, astronomers measured the velocity of the stars moving around NGC 4889's centre. These velocities—which depend on the mass of the object they orbit—revealed the immense mass of the supermassive black hole.

Explore further: Hubble sees a supermassive and super-hungry galaxy

Related Stories

Hubble sees a supermassive and super-hungry galaxy

January 11, 2016

This NASA/ESA Hubble Space Telescope image shows the spiral galaxy NGC 4845, located over 65 million light-years away in the constellation of Virgo (The Virgin). The galaxy's orientation clearly reveals the galaxy's striking ...

Hubble spies a rebel

January 25, 2016

Most galaxies possess a majestic spiral or elliptical structure. About a quarter of galaxies, though, defy such conventional, rounded aesthetics, instead sporting a messy, indefinable shape. Known as irregular galaxies, this ...

Oxymoronic black hole RGG 118 provides clues to growth

August 12, 2015

Astronomers using NASA's Chandra X-ray Observatory and the 6.5-meter Clay Telescope in Chile have identified the smallest supermassive black hole ever detected in the center of a galaxy, as described in our latest press release. ...

Recommended for you

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Earth's days getting longer: study (Update)

December 7, 2016

Earth's days are getting longer but you're not likely to notice any time soon—it would take about 3.3 million years to gain just one minute, according to a study published on Wednesday.

New evidence for a warmer and wetter early Mars

December 7, 2016

A recent study from ESA's Mars Express and NASA's Mars Reconnaissance Orbiter (MRO) provides new evidence for a warm young Mars that hosted water across a geologically long timescale, rather than in short episodic bursts ...

ExoMars orbiter images Phobos

December 7, 2016

The ExoMars Trace Gas Orbiter has imaged the martian moon Phobos as part of a second set of test science measurements made since it arrived at the Red Planet on 19 October.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

wduckss
2 / 5 (4) Feb 11, 2016
From the cross section (several sources) data, this black hole is smaller than Earth and no significant of action after 1 light year.

If is, the diameter of the center of the Milky Way 30,000 vertically, and 40,000, horizontally, it is the diameter of the center of NGC 4889 is greater than or for at least the same.

In the real world to find a small detail which is a minimum of 30,000 times smaller than a whole requires a very complex microscope.

How they distance more (as opposed to the real world) the evidence is more convincing and fairy tales, more interesting.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.