Fishing for answers on bone loss in space

January 25, 2016 by Melissa Gaskill
JAXA astronaut Akihiko Hoshide at the Aquatic Habitat in the Kibo module of the International Space Station, where Medaka fish were reared for an experiment on the loss of bone density in space. Credit: NASA

During spaceflight, astronauts lose bone mineral density, but it is not clear exactly what causes this loss. Scientists trying to understand why recently went fishing for answers. They reared small freshwater fish aboard the International Space Station for 56 days and examined the animals' jawbones and teeth for any potential effects from microgravity.

Previous studies suggest that activates osteoclasts, cells that control the breakdown of bone tissue, and the Medaka investigation examined the relationship between this increased osteoclast activity and reduced density.

A paper based on the Medaka results was recently published Scientific Reports. Co-author and principal investigator Akira Kudo, a professor in the Graduate School of Bioscience and Biotechnology at Tokyo Institute of Technology, said investigators found increased volume and activity of osteoclasts and significant reduction of in the fish aboard the station. Using electron microscopes, investigators also observed abnormalities in osteoclast mitochondria. Mitochondria are round or rod-shaped organelles inside most of our cells that produce enzymes for converting food to energy.

Genetic analysis also revealed significant increase in activity in two genes that may be involved in mitochondria function, suggesting that osteoclast activation might be linked to the reaction of mitochondria to microgravity.

Comparing volume and activity of the cells that break down bone density in the upper and lower jaw bones of Medaka fish after 56 days spent aboard the International Space Station with those on the ground. Credit: Chatani et al, Sci. Rep. 5, 14172 (2015)

"If this is also true for astronauts, medicines that target mitochondria dysfunction may restore the bone loss in space," said Kudo.

Additional research will be necessary back on Earth to verify this information in order to take these findings to the next step.

Medaka fish are considered model organisms for life science research, which means they have characteristics that allow them easily to be maintained, reproduced and studied. Previously, these fish were mated successfully in space and the resulting eggs developed and hatched normally. In this investigation, 24 fish were transported to the and spent two months in the Aquatic Habitat in the Kibo module. The fish used for this experiment have fluorescent osteoclast cells, which makes them easier to observe.

The fish in space showed normal body growth even though they had decreased in bones and teeth. The investigators observed the fish regularly and while the Medaka swam normally at first, they tended to become motionless late in the flight. This indicates that microgravity's effect on bone density likely involves changes in mechanical force that lowers overall physical activity and therefore causes osteoclast activation

"It has been difficult to understand the mechanism of age-related bone loss on Earth," Kudo said. "The Medaka experiment finding of new genes affected by microgravity provides a good animal model to clarify this mechanism." The work could advance development of drugs to treat osteoporosis here on Earth in addition to reducing bone loss in astronauts on long-term missions.

Other results from the experiment conducted on Medaka and recently published in a PLOS ONE paper identified 11 genes involved in changes in other tissues, including the brain and intestines. Several of these genes overlapped with those involved in , making it likely they play a role in sensing microgravity. Researchers plan to test the function of these genes in future space station experiments.

For this Medaka investigation, though, fishing for answers yielded an excellent catch.

Explore further: Fish reveal details of bone density loss during space missions

Related Stories

Five things that happen to your body in space

January 18, 2016

Tim Peake is the first official British astronaut to walk in space. The former Army Air Corps officer has spent a month in space, after blasting off on a Russian Soyuz rocket to the International Space Station on December ...

Recommended for you

Gaia spies two temporarily magnified stars

October 28, 2016

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing ...

How planets like Jupiter form

October 28, 2016

Young giant planets are born from gas and dust. Researchers of ETH Zürich and the Universities of Zürich and Bern simulated different scenarios relying on the computing power of the Swiss National Supercomputing Centre ...

More than 15,000 near-Earth objects and counting

October 28, 2016

The international effort to find, confirm and catalogue the multitude of asteroids that pose a threat to our planet has reached a milestone: 15 000 discovered – with many more to go.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.