Researchers turn potato byproducts into eco-friendly plastic films

October 28, 2015 by Helen Metella
Marleny Aranda Saldaña (middle) with graduate students Yujia Zhao (left) and Carla Sofia Valdivieso Ramirez. Saldaña and her research team developed a starch-based plastic film that has antioxidant and antimicrobial properties.

Using potato peels and culls considered waste by Alberta's potato-processing industry, University of Alberta researchers have created a starch-based bioactive film that is both eco-friendly and rich in antioxidants.

With applications for both the and , the new bioactive film is a green alternative to traditional petroleum-based plastics and possesses added advantages, said Marleny Aranda Saldaña, a process engineer and associate professor in the Department of Agricultural, Food & Nutritional Science who led the research team.

"Development of antioxidant and antimicrobial bioactive films can improve product shelf life and safety," she said.

"Potato peels have high phenolic content, a natural compound for plant protection, which you also find in apple peels and grape peels, among others."

Saldaña and her team, which includes microbiologist and Canada Research Chair Michael Gänzle and cereal scientist Thava Vasanthan, used subcritical fluid technology to extract phenolic compounds from the potato biomass. Traditional methods use methanol, a toxic solvent.

Subcritical fluid technology uses water above its boiling point and below its critical temperature, under pressure. In subcritical water medium, starch can be modified to influence the film's properties, such as its tensile strength, elongation, and antioxidant and antimicrobial activity.

Saldaña's team has already obtained an international Patent Cooperation Treaty application for the processing method and TEC Edmonton is in the process of commercializing the process. Currently, the team is testing antimicrobial activity. The next step is to test the films on packaging of ready-to-eat meat.

With international interest on whether the subcritical method would also work on cassava (the starchy root of a tropical tree), her team is also studying that possibility.

Another researcher in Saldaña's lab is looking at adding nanoparticles on the films. Right now, there's a maximum amount of /antimicrobials that the film can hold, but with nanoparticles, more could be added and released strategically.

Meanwhile, Saldaña says, the overall goal is to achieve complete use of the available biomass. Her team, including visiting scientists from Brazil and China, also uses sub/supercritical water processing technology to obtain other value-added compounds and to gasify what's left of the biomass residue to obtain hydrogen. That research is ongoing.

Explore further: The traditional remedy bitter cumin is a great source antioxidant plant phenols

Related Stories

Antimicrobial edible films inhibit pathogens in meat

May 1, 2014

Antimicrobial agents incorporated into edible films applied to foods to seal in flavor, freshness and color can improve the microbiological safety of meats, according to researchers in Penn State's College of Agricultural ...

Essential oils may provide good source of food preservation

July 21, 2014

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), found that essential oils may be able to be used as food preservatives in packaging to help extend the shelf-life of food ...

Langsat peel a potential source of natural antioxidants

July 8, 2015

Langsat (Lansium domesticum) is a tropical fruit that is commonly cultivated in Southeast Asia. The fruit is rich in fibre, vitamins and minerals, while the peel of langsat contains phenolics and carotenoids, and is traditionally ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Electron microscopy reveals how vitamin A enters the cell

August 25, 2016

Using a new, lightning-fast camera paired with an electron microscope, Columbia University Medical Center (CUMC) scientists have captured images of one of the smallest proteins in our cells to be "seen" with a microscope.

Hitching a ride: Misfiring drugs hit the wrong targets

August 25, 2016

It probably isn't surprising to read that pharmaceutical drugs don't always do what they're supposed to. Adverse side effects are a well-known phenomenon and something many of us will have experienced when taking medicines.

Using light to control genome editing

August 25, 2016

The genome-editing system known as CRISPR allows scientists to delete or replace any target gene in a living cell. MIT researchers have now added an extra layer of control over when and where this gene editing occurs, by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.