Parasitized bees are self-medicating in the wild, study finds

September 1, 2015
A Dartmouth-led study finds that bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, suggesting that plant chemistry could help combat the decline of bee species. Credit: Leif Richardson

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline of bee species.

The researchers previously found in lab studies that containing nicotine and other natural chemicals in significantly reduced the number of parasites in sickened bees, but the new study shows parasitized bees already are taking advantage of in the wild.

The study is to appear in the journal Ecology but may be reported now by the media. A PDF of the preprint is available on request. The study was conducted by researchers at Dartmouth College and the University of Colorado-Boulder.

Colony collapse disorder among bees has drawn much attention in recent years, but parasites are a common natural cause of disease in bumblebees and honeybees, both of which play a vital role in agriculture and plant pollination. The intestinal parasite the researchers looked at can strongly affect their survival, reproduction and foraging behavior.

The researchers studied the effects of a group of plant secondary metabolites found naturally in floral nectar—iridoid glycosides—on bumblebee foraging and plant reproduction. Iridoid glycosides can deter deer and other herbivores, but the researchers' earlier studies showed the compounds have a medicinal effect on parasitized bees by reducing their parasite load.

In the new study, the researchers looked at concentrations of two iridoid glycoside compounds, aucubin and catalpol, in nectar and pollen in four populations of turtlehead, a bee-pollinated wetland plant found throughout eastern North America. They then manipulated concentrations of the chemicals in those flowers to study their effects on bee foraging.

The results showed that relative to healthy bees, those infected with the greatly preferred visiting flowers with the highest iridoid glycoside concentrations. Bees attacked by a second antagonist, a parasitoid fly, did not respond in this way to nectar chemistry. The researchers also found that flowers with the highest concentrations of nectar iridoid glycosides donated significantly more pollen to other flowers following bee visits, showing that nectar chemistry can affect plant reproductive success.

"Secondary metabolites are commonly present in floral nectar and pollen, yet their functions are not well understood," says lead author Leif Richardson, a former Dartmouth graduate student now at the University of Vermont. "In this study, we show that these compounds could influence plant reproduction via complex suites of interactions involving not only pollinators but also their natural enemies."

Adds senior author Rebecca Irwin, a former Dartmouth faculty member now at North Carolina State University: "We show that might be able to self-medicate, altering their foraging behavior when parasitized so as to maximize their consumption of beneficial plant secondary metabolite compounds."

Explore further: 'Nature's medicine cabinet' helps bees reduce disease load (Update)

Related Stories

Bumblebees use nicotine to fight off parasites

April 27, 2015

Researchers from Queen Mary University of London (QMUL) and Royal Holloway, University of London (RHUL), gave bumblebees the option to choose between a sugar solution with nicotine in it and one without. Those bees infected ...

Researchers discover bees are picky pollinators

January 24, 2014

( —Huge swaths of the agricultural industry depend on the humble honeybee. According to the USDA, "about one mouthful in three in our diet directly or indirectly benefits from honey bee pollination." Biologists ...

Recommended for you

Study shows how giraffe assassin bugs outwit spider prey

October 26, 2016

(—A biologist at Macquarie University in Australia has discovered the secret behind the giraffe assassin's ability to catch and kill spiders in their webs. In his paper published on the open access site Royal Society ...

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...

Researchers identify genes for 'Help me!' aromas from corn

October 25, 2016

When corn seedlings are nibbled by caterpillars, they defend themselves by releasing scent compounds that attract parasitic wasps whose larvae consume the caterpillar—but not all corn varieties are equally effective at ...

Genome editing: Efficient CRISPR experiments in mouse cells

October 25, 2016

In order to use the CRISPR-Cas9 system to cut genes, researchers must design an RNA sequence that matches the DNA of the target gene. Most genes have hundreds of such sequences, with varying activity and uniqueness in the ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Sep 01, 2015
They're self-medicating?
Break down their doors, and throw them in jail!
not rated yet Sep 01, 2015
looks like chelone.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.