Lasers tailor graphene for new electronics technology

August 6, 2015 by Ivan Bobrinetskiy
Lasers tailor graphene to brand-new technology in electronics
Credit: AIMEN

Carbon nanomaterials display extraordinary physical properties, outstanding among any other substance available, and graphene has grown as the most promising material for brand-new electronic circuitry, sensors and optical communications devices. Graphene is a single atom-thick sheet of honeycomb carbon lattice, with unique electronic and optical properties, which could bring a new era of fast, reliable, low power communication and information processing.

But two problems hinder graphene´s uptake in real world electronics. There is no large-scale technology to control its properties, and the traditional technology used for silicon-based processors (solid state) is not suitable for graphene processing (molecular material).

The researchers from Technological Center AIMEN explore the use of ultrafast lasers as tools for graphene processing. The can be focused precisely to tailor the properties of graphene films in finely defined areas to produce distinct behaviors useful for producing devices.

The key is the use of short, highly controlled , which induce chemical changes in the carbon lattice. A single pulse of laser with a duration of several picoseconds is enough—the duration of a single oscillation in a polar molecule, like water. At this timescale, researchers demonstrated that they can pattern graphene lattices by cutting, adding external molecules or binding compounds (functional groups like oxygen or hydroxyl). As the laser spot can be focused in an area of one square micron or less, direct writing of devices on graphene can be achieved with high precision, producing nano-devices with minimal footprint and maximum efficiency.

As recently published in AIP Applied Physics Letters (Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions), the work of AIMEN researchers demonstrated laser-based, large-scale patterning of graphene at high speed and resolution, opening new possibilities for device making. The speed of the process can be higher than one m/s for drawing the micrometer-sized features. Processing speeds over 10 m/s could be attained using advanced optical scanning.

Lasers tailor graphene to brand-new technology in electronics
Credit: AIMEN

Moreover, the work demonstrated the control of the thermal and chemical processes by adjusting laser beam characteristics. For low energy inputs, multiphoton absorption plays a major role, inducing chemical reactions between carbon and atmosphere molecules, resulting in new optical properties in graphene.

The potential of the altered (like spectral transmission) of functionalized graphene are newly recognized, and the full industrial potential of this technology needs to be tackled. This research lays a foundation for deeper understanding of the chemical and physical processes for industrially feasible patterning, as well as tests for real device applications for future electronics.

Explore further: On the way to breaking the terahertz barrier for graphene nanoelectronics

More information: "Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions." Appl. Phys. Lett. 107, 043104 (2015);

Related Stories

Researchers learn to control graphene with lasers

June 3, 2015

New numerical simulations by Berkeley Lab Alvarez Fellow Alexander Kemper and his colleagues at Stanford University reveal how the quantum properties of graphene can be manipulated at ultrafast timescales with femtosecond ...

Researchers make magnetic graphene

January 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, ...

Parity effect observed in graphene

August 4, 2015

Researchers have theoretically projected and successfully proven through experimentation the parity effect of the quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). Graphine, or single-layered ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.