A cost-effective solution to tuned graphene production

A cost-effective solution to tuned graphene production
Mario Hofmann is holding an example set up of the electrochemical synthesis. Credit: (c) Mario Hofmann / IOP Publishing

Graphene has been called the miracle material but the single-atomic layer material is still seeking its place in the materials world. Now a method to make 'defective' graphene could provide the answer.

Today (30 July), in the journal Nanotechnology, a team of researchers report that they have developed a simple electrochemical approach which allows to intentionally be created in the graphene, altering its electrical and mechanical properties and making the material even more useful.

The researchers used a technique called electrochemical synthesis to break graphite flakes into graphene layers. By varying the voltage they could change the resulting graphene's thickness, flake area, and number of defects - all of which alter the properties of graphene.

"Graphene is basically a metal - so it's somewhat boring!" explains Mario Hofmann, a researcher at National Cheng Kung University in Taiwan. "But when you start adding defects you begin to get interesting effects."

First studies on the electronic properties of graphene that brought received a lot of attention and the Physics Nobel prize in 2010 used graphene that was produced using adhesive tape to remove flakes of graphene from graphite. However, its defective counterpart graphene oxide could be first to carve out a significant market share as polymer fillers and battery electrodes.

More precise control over the amount and nature of defects could bring about new applications of graphene in drug delivery or electronics. "Whilst electrochemistry has been around for a long time it is a powerful tool for nanotechnology because it's so finely tuneable." continues Hofmann. "In graphene production we can really take advantage of this control to produce defects." Carefully controlling the voltage has allowed the team a previously unknown level of control of the amount of these defects.

The team developed a system of pulsed instead of continuous voltages, allowing them to unravel the exfoliation mechanism. To monitor the evolution of the graphene in the solvent they found that simply tracking the solution's transparency could give them quantitative information on the efficiency and onset of exfoliation.

They next plan to study the effects of adjusting the pulse durations throughout the exfoliation process to improve the amount of exfoliated graphene and introduce more complex pulse shapes to selectively produce certain types of defects.


Explore further

On the way to breaking the terahertz barrier for graphene nanoelectronics

More information: Controlling the properties of graphene produced by electrochemical exfoliation, Nanotechnology 26 335607. iopscience.iop.org/0957-4484/26/33/335607
Journal information: Nanotechnology

Citation: A cost-effective solution to tuned graphene production (2015, July 29) retrieved 24 May 2019 from https://phys.org/news/2015-07-cost-effective-solution-tuned-graphene-production.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
1095 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more