Could stronger, tougher paper replace metal?

July 24, 2015
Could stronger, tougher paper replace metal?

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant to non-recoverable deformation) and tough (tolerant of damage).

"Strength and toughness are often exclusive to each other," said Teng Li, associate professor of mechanical engineering at UMD. "For example, a stronger material tends to be brittle, like cast iron or diamond."

The UMD team pursued the development of a strong and tough material by exploring the mechanical properties of cellulose, the most abundant renewable bio-resource on Earth. Researchers made papers with several sizes of – all too small for the eye to see – ranging in size from about 30 micrometers to 10 nanometers. The paper made of 10-nanometer-thick fibers was 40 times tougher and 130 times stronger than regular notebook paper, which is made of cellulose fibers a thousand times larger.

"These findings could lead to a new class of high performance engineering materials that are both strong and tough, a Holy Grail in materials design," said Li.

High performance yet lightweight cellulose-based materials might one day replace conventional structural materials (i.e. metals) in applications where weight is important. This could lead, for example, to more energy efficient and "green" vehicles. In addition, team members say, transparent cellulose nanopaper may become feasible as a functional substrate in flexible electronics, resulting in paper electronics, and flexible displays that could radically change many aspects of daily life.

Cellulose fibers can easily form many hydrogen bonds. Once broken, the hydrogen bonds can reform on their own—giving the material a 'self-healing' quality. The UMD discovered that the smaller the cellulose fibers, the more per square area. This means paper made of very small fibers can both hold together better and re-form more quickly, which is the key for cellulose nanopaper to be both strong and tough.

"It is helpful to know why cellulose nanopaper is both strong and tough, especially when the underlying reason is also applicable to many other materials," said Liangbing Hu, assistant professor of materials science at UMD.

To confirm, the researchers tried a similar experiment using carbon nanotubes that were similar in size to the cellulose fibers. The carbon nanotubes had much weaker bonds holding them together, so under tension they did not hold together as well. Paper made of carbon nanotubes is weak, though individually nanotubes are arguably the strongest material ever made.

One possible future direction for the research is the improvement of the mechanical performance of carbon nanotube paper.

"Paper made of a network of carbon nanotubes is much weaker than expected," said Li. "Indeed, it has been a grand challenge to translate the superb properties of carbon nanotubes at nanoscale to macroscale. Our research findings shed light on a viable approach to addressing this challenge and achieving paper that is both strong and tough."

Explore further: Cellulose from wood can be printed in 3-D

More information: "Anomalous scaling law of strength and toughness of cellulose nanopaper." PNAS 2015 112 (29) 8971-8976; published ahead of print July 6, 2015, DOI: 10.1073/pnas.1502870112

Related Stories

Cellulose from wood can be printed in 3-D

June 17, 2015

A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter. They also added carbon nanotubes ...

Nanopaper as an optical sensing platform

July 23, 2015

An international team led by the ICREA Prof Arben Merkoçi has just developed new sensing platforms based on bacterial cellulose nanopaper. These novel platforms are simple, low cost and easy to produce and present outstanding ...

Cellulose becoming a supermaterial of the future

June 4, 2015

The researchers are working together to develop new biomaterial applications within the Design Driven Value Chains in the World of Cellulose (DWoC) 2.0 project coordinated by VTT.

'Green' cars could be made from pineapples and bananas

March 28, 2011

Your next new car hopefully won't be a lemon. But it could be a pineapple or a banana. That's because scientists in Brazil have developed a more effective way to use fibers from these and other plants in a new generation ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 24, 2015
They should first make a $15 device to attach 2 papers together. Using Cellophane tape OR Glue is NOT Ideal. At least 4 sheets long or indefinitely long paper at homes!
Jul 24, 2015
This comment has been removed by a moderator.
Jul 24, 2015
This comment has been removed by a moderator.
Jul 25, 2015
This comment has been removed by a moderator.
not rated yet Jul 25, 2015
I look forward to my paper that a hover car.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.