Single-cell genomics sheds light on nutrient and carbon cycling in Actinobacteria

August 29, 2014
Single cells of acI Actinobacteria were isolated from samples collected in Lake Mendota, Wisconsin. Credit: Ann Althouse via Flickr, CC BY-NC 2.0

Researchers assembled and compared draft genomes of acI Actinobacteria from single cells collected in four freshwater lakes in the United States and Europe.

The single cells collected represented three different acI tribes of Actinobacteria, allowing researchers to learn more about their roles in carbon and other nutrient cycling.

Among the most ubiquitous microbes in ecosystems are members of the acI lineage of Actinobacteria. By some estimates they account for as much as 50 percent of the plankton in and rivers all over the world, and yet researchers still don't know exactly what ecological role these microbes play, and how they influence the carbon cycle. As reported in a study published online ahead of print on August 5, 2014 in The ISME Journal, a team including researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, harnessed single-cell genomics to learn more about these microbes and their lifestyles.

Prior to this study, only one nearly complete of an acI bacterium had been sequenced. For this work, which was supported in part by the DOE JGI Community Science Program, water samples were collected from Lakes Mendota and Sparkling in Wisconsin, Lake Damariscotta in Maine, and from Lake Stechlin in Germany. From these samples, draft assemblies of 10 single amplified genomes (SAGs) representing three acI tribes were generated at the DOE JGI. These 10 SAGs were then compared against a SAG previously sequenced in another study to get a better idea of which traits had been conserved within the acI lineage, as well as how the three acI groups represented differed from one another.

Though none of the sequenced draft genomes of single cells isolated from freshwater were complete, the team did find genes for several conserved traits such as central metabolism, shared across all three acI tribes. Additionally, many of the SAGs contained an enzyme that allowed acI bacteria to access a compound synthesized by cyanobacteria that stores both carbon and nitrogen. The team also made preliminary attempts to find out if each tribe of acI bacteria had genes associated with a particular ecological niche, but having incomplete genomes made it difficult to derive any conclusions. "Members of the acI lineage are clearly specialized relative to their parent order (Actinomycetales) and other sequenced freshwater bacteria," the team concluded. "Their highly streamlined genomes and small cell size suggest they share broad niche dimensions with ultramicro- bacteria such as freshwater members of the SAR11 clade. Although many characteristics of the SAGs analyzed here were consistent with the only other previously published acI genome… investigating three different tribes showed ecological differentiation among them."

Explore further: Streamlining a common survival strategy in marine microbes

More information: Ghylin TW et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 2014 Aug 5. DOI: 10.1038/ismej.2014.135. [Epub ahead of print]

Related Stories

Streamlining a common survival strategy in marine microbes

July 4, 2013

(Phys.org) —Despite advances made in the fields of DNA sequencing and analysis, researchers have barely begun to scratch the tip of the iceberg in cataloging the planet's microbial diversity, mainly because only a minute ...

Going deep to improve maize transcriptome

April 29, 2014

A team of researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI), the University of California, Berkeley, and the Great Lakes Bioenergy Research Center generated an ultra-deep, high quality transcriptome–the ...

Getting a jump on plant-fungal interactions

July 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

How yeast formations got started

August 15, 2014

Researchers conducted a comparative analysis of nearly 60 fungal genomes to determine the genetic traits that enabled the convergent evolution of yeasts.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.