Prions can trigger 'stuck' wine fermentations, researchers find

August 28, 2014 by Pat Bailey
The discovery of biochemical communication system gives scientists a clue to how stuck fermentations can be avoided when making wine. (Thinkstock photo)

A chronic problem in winemaking is "stuck fermentation," when yeast that should be busily converting grape sugar into alcohol and carbon dioxide prematurely shuts down, leaving the remaining sugar to instead be consumed by bacteria that can spoil the wine.

A team of researchers including UC Davis geneticist Linda Bisson has discovered a biochemical communication system behind this problem. Working through a prion—an abnormally shaped protein that can reproduce itself—the system enables in fermenting wine to switch yeast from sugar to other food sources without altering the yeast's DNA.

"The discovery of this process really gives us a clue to how stuck fermentations can be avoided," said Bisson, a professor in the Department of Viticulture and Enology. "Our goal now is to find yeast strains that essentially ignore the signal initiated by the bacteria and do not form the prion, but instead power on through the fermentation."

She suggests that the discovery of this biochemical mechanism, reported Aug. 28 in the journal Cell, may also have implications for better understanding metabolic diseases, such as Type 2 diabetes, in humans.

Bacteria, yeast and fermentation:

Biologists have known for years that an ancient biological circuit, based in the membranes of , blocks yeast from using other carbon sources when the sugar glucose is present.

This circuit, known as "glucose repression," is especially strong in the yeast species Saccharomyces cerevisiae, enabling people to use that yeast for practical fermentation processes in winemaking, brewing and bread making, because it causes such efficient processing of sugar.

Prions play key role:

In this study, the researchers found that the glucose repression circuit is sometimes interrupted when bacteria jump-start the replication of the prions in membranes of yeast cells. The interference of the prions causes the yeast to process carbon sources other than glucose and become less effective in metabolizing sugar, dramatically slowing down the fermentation until it, in effect, becomes "stuck."

"This type of prion-based inheritance is useful to organisms when they need to adapt to environmental conditions but not necessarily permanently," Bisson said. "In this case, the heritable changes triggered by the prions enable the yeast to also change back to their initial mode of operation if environmental conditions should change again."

The researchers demonstrated in this study that the process leading to a stuck fermentation benefits both the bacteria and the yeast. As metabolism slows down, conditions in the fermenting wine become more conducive to bacterial growth, and the yeast benefit by gaining the ability to metabolize not only glucose but also other carbon sources as well—maintaining and extending their lifespan.

Solutions for winemakers:

Now that this communication mechanism between the bacteria and yeast is more clearly understood, winemakers should be better able to avoid stuck fermentations.

"Winemakers may want to alter the levels of sulfur dioxide used when pressing or crushing the grapes, in order to knock out bacteria that can trigger the processes that we now know can lead to a stuck fermentation," Bisson said. "They also can be careful about blending grapes from vineyards known to have certain bacterial strains or they could add yeast strains that have the ability to overpower these vineyard bacteria."

Explore further: Taking the stress off yeast produces better wine

Related Stories

Taking the stress off yeast produces better wine

September 9, 2009

Turning grape juice into wine is a stressful business for yeasts. Dr Agustin Aranda from the University of Valencia, Spain has identified the genes in yeast that enable it to respond to stress and is investigating ways to ...

The microbes make the sake brewery

July 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

Recommended for you

A novel toxin for M. tuberculosis

August 4, 2015

Despite 132 years of study, no toxin had ever been found for the deadly pathogen Mycobacterium tuberculosis, which infects 9 million people a year and kills more than 1 million.

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Fish that have their own fish finders

August 4, 2015

The more than 200 species in the family Mormyridae communicate with one another in a way completely alien to our species: by means of electric discharges generated by an organ in their tails.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.