New technology illuminates colder objects in deep space

Jul 09, 2014

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern University team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space.

"High performance infrared cameras are crucial for space exploration missions," said Manijeh Razeghi, the Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern University's McCormick School of Engineering and Applied Science. "By studying the infrared waves emitted by cool stars and planets, scientists are beginning to unlock the mysteries of these cooler objects."

Researchers have long looked to infrared waves to probe the depths of space. Infrared has a longer wavelength than , so it can penetrate dense regions of gas and dust with less scattering and absorption. Current infrared detectors are typically built with mercury cadmium telluride, which works well with mid- and long-infrared wavelengths. However, this well-established technology demonstrates low uniformity and instability for infrared waves with very long wavelengths.

Published in the June 23 issue of Applied Physics Letters, Razeghi and her collaborators describe a , which uses a novel type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb). The technology shows a stable optical response in regards to very long wavelength infrared light.

By engineering the quantum properties of the type II superlattice material, the team demonstrated the world's first InAs/InAsSb very long wavelength infrared photodiodes with high performance. The new detector can be used as an inexpensive and robust alternative to current infrared technologies.

"This material has emerged as the platform for the new generation of infrared detection and imaging," said Razeghi who leads McCormick's Center for Quantum Devices. "It has proved to have longer carrier lifetimes and promises a better controllability in epitaxial growth and simpler manufacturability."

Razeghi presented this work in a keynote talk at the International Society for Optical and Photonics Defense, Security, and Sensing conference in Baltimore in April and at the Microelectronics Workshop in Istanbul, Turkey last month.

Explore further: Continuous terahertz sources demonstrated at room temperature

add to favorites email to friend print save as pdf

Related Stories

Continuous terahertz sources demonstrated at room temperature

Jun 05, 2014

Imagine a technology that could allow us to see through opaque surfaces without exposure to harmful x-rays, that could give us the ability to detect harmful chemicals and bio-agents from a safe distance, and that could enable ...

Recommended for you

Possible bright supernova lights up spiral galaxy M61

21 hours ago

I sat straight up in my seat when I learned of the discovery of a possible new supernova in the bright Virgo galaxy M61. Since bright usually means close, this newly exploding star may soon become visible ...

Fifteen years of NASA's Chandra X-ray observatory

22 hours ago

This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours.

Confirming a 3-D structural view of a quasar outflow

22 hours ago

A team of astronomers have observed a distant gravitationally-lensed quasar (i.e., an active galactic nucleus) with the Subaru Telescope and concluded that the data indeed present a 3-D view of the structure ...

Hubble sees 'ghost light' from dead galaxies

Oct 30, 2014

(Phys.org) —NASA's Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened ...

When did galaxies settle down?

Oct 30, 2014

Astronomers have long sought to understand exactly how the universe evolved from its earliest history to the cosmos we see around us in the present day. In particular, the way that galaxies form and develop ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Osiris1
5 / 5 (1) Jul 10, 2014
Add such a detector to the JWST. Maybe cool objects like planets could be imaged better.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.