Computer model that can replicate the growth of cities has valuable implications for urban planning and sustainability

Jul 16, 2014
A computer model that can replicate the growth of cities has valuable implications for urban planning and sustainability
Simulations generated by a model that replicates city growth to determine likely land-use patterns (right) show close alignment between actual land-use maps (left) for two sample cities — Singapore (top) and Toronto (bottom). Credit: J. Decraene et al.

In 2009, the global number of city dwellers surpassed that of rural dwellers. Understanding how cities evolve is vital to a world that will continue to urbanize. Now, researchers at A*STAR have developed a computer model that can reconstruct cities—building them from the 'bottom up'—to investigate the fundamental mechanisms that underpin and govern city growth.

Modeling dynamic urban growth presents many challenges due to the complexity of city systems and the technical and data requirements of . Christopher Monterola and co-workers at the A*STAR Institute of High Performance Computing, together with scientists in the United Kingdom, have built a based on a so-called cellular automation system, which uses a minimalist approach to simulate city growth and support planning for .

"The overarching vision of our team is to capture the form, structure and dynamics of different cities to better understand, manage, design and evaluate urban systems," explains Monterola. "Essentially, we are trying to generate the recipe for a sustainable, smart city."

The model works by taking a simple set of rules—for example, land value and physical constraints to building such as water bodies and parklands—and defining the probable land use of each cell, or unit of land, according to the information provided by its neighboring cells. The model then takes into account the different land-use sectors—industrial, business and residential—and determines their 'range of influence', to decide how far a certain type of land use will spread within a certain radius. For each simulation, the team set the model center at the original marketplace, or central business district, of a real city, and let the model 'grow' the city from there.

The team validated their results using high-resolution data from various cities, including Singapore, Toronto and Las Vegas. Their model replicated, fairly accurately, the land-use patterns of the actual cities (see image).

"Our results suggest that there are some generic rules that a growing city follows as it evolves," Monterola states. "We found that there was an effective and stable cluster size for business, residential and industrial areas in all the cities studied, and their size ratios are remarkably regular. Hence, sustainability concepts must be somehow anchored on accepting this innate evolution, and policies need to be planned around such constraints."

The team plans to further develop their urban growth model, for example by investigating the limitations on individual transport systems and working on ways to make cities run more efficiently and sustainably.

Explore further: Research reveals potential environmental harm of nanomaterials

More information: Decraene, J., Monterola, C., Lee, G. K. K., Hung, T. G. G., & Batty, M. "The emergence of urban land use patterns driven by dispersion and aggregation mechanisms." PLoS ONE 8, e80309 (2013).

Related Stories

Peering into the future: How cities grow

Nov 19, 2013

Migration patterns into and out of cities are the result of millions of individual decisions, which in turn are affected by thousands of factors like economics, location, politics, security, aesthetics, sentiments and others. ...

50 ideas for sustainable cities

Oct 17, 2013

Since May 2012, ten Fraunhofer Institutes and numerous industrial, commercial and municipal partners have been working together to develop concepts for clean, efficient and life-enhancing urban environments. ...

Recommended for you

Seafood supply altered by climate change

2 hours ago

The global supply of seafood is set to change substantially and many people will not be able to enjoy the same quantity and dishes in the future due to climate change and ocean acidification, according to UBC scientists.

Water point 'bank machines' boost Kenya slums

9 hours ago

Around the world people use bank machines to access cash: but in the Kenyan capital's crowded slums, people now use similar machines to access an even more basic requirement—clean water.

Nemo's garden off Italy offers hope for seabed crops

9 hours ago

In the homeland of pesto, a group of diving enthusiasts have come up with a way of growing basil beneath the sea that could revolutionise crop production in arid coastal areas around the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.