Tricking plants to see the light may control the most important twitch on Earth

Jul 30, 2014 by Kelly April Tyrrell
New findings show that phytochromes, the “eyes” that help plants sense light, can be manipulated — "tricking" shaded plants into thinking they are in the sun. Above are mature plants with various changes to the phytochrome. Credit: Richard Vierstra

Copious corn growing in tiny backyard plots? Roses blooming in December? Thanks to technology that the University of Wisconsin-Madison's Richard Vierstra has been developing for years, these things may soon be possible. And now, new findings out of the genetics professor's lab promise to advance that technology even further.

For the first time, Vierstra and his team have revealed the structure of the plant phytochrome, a critical molecule that detects the light that tells when to germinate, grow, make food, flower and even age. Like eyes, the phytochrome is a that converts sunlight into chemical signals to get these jobs done. By manipulating it, the group can alter the conditions under which all plants grow and develop.

Vierstra's group published the structure in a recent issue of the journal Proceedings of the National Academy of Science. His team also presented its results this month at the annual meeting of the American Society of Plant Biologists in Portland, Oregon.

"It's the molecule that tells plants when to flower," says Vierstra. "Plants use the molecule to sense where they are in the canopy; they use the phytochromes for color vision—to sense whether they are above, next to or under other plants."

Vierstra previously determined the structure of a similar phytochrome from light-sensing bacteria, which guided his work in plants. He already has several patents on the technologies derived from these structures and has been in talks to commercialize them. The determination of a plant phytochrome three-dimensional structure will only accelerate improvements to the technology.

One of the biggest moves in agriculture, Vierstra says, is to be able to grow plants at higher density, allowing producers to plant more crops in a given area, thus saving space and other resources.

Currently, there is a limit to how closely plants can grow relative to their nearest neighbors. At high density, the leaves of one plant shade the other, signaling to the shaded plant it isn't receiving enough sunlight. These plants grow stems and stalks rather than fruits and seeds, becoming long and leggy as they reach for the sky.

That process begins with the phytochrome, which senses the wavelength of light shining on plants. Plants in full sun absorb red light while shaded plants receive only the leftover, far-red light. The type of light the phytochrome "sees" tells the plant whether to stretch out and become taller or to flower and make fruit. Based on the light available, the phytochrome cycles between an inactive and active state.

"Photoconversion between the active and inactive states of phytochromes is arguably the most important twitch on this planet, as it tells plants to become photosynthetic and consequently make the food we eat and the oxygen we breathe," says Vierstra.

Vierstra and his team found that by making specific changes to the light sensor, they can dupe it into staying in its active state longer.

"By mutating the phytochromes, we created plants that think they're in full sun, even when they're not," Vierstra says.

Three decades ago, while a postdoctoral researcher at UW-Madison, Vierstra was the first to purify the protein. Now, his work has come full circle. He hopes the research team's findings become the scaffold for a toolkit others can use—one that might fundamentally alter agriculture.

In addition to growers, the research also has implications for other scientists, as the technology could be used to create new fluorescent molecules for detecting minuscule events inside cells, and in the field of optogenetics, which uses as a tool to drive biological change.

Explore further: New technology could help food crops thrive in crowded fields

add to favorites email to friend print save as pdf

Related Stories

Light-sensitive 'eyes' in plants

May 05, 2014

Most plants try to turn towards the sun. Scientists from the University of Gothenburg have worked with Finnish colleagues to understand how light-sensitive proteins in plant cells change when they discover ...

Algae 'see' a wide range of light

May 01, 2014

(Phys.org) —Aquatic algae can sense an unexpectedly wide range of color, allowing them to sense and adapt to changing light conditions in lakes and oceans. The study by researchers at UC Davis was published ...

Scientists decipher structure of nature's 'light switch'

May 31, 2010

(PhysOrg.com) -- When the first warm rays of springtime sunshine trigger a burst of new plant growth, it's almost as if someone flicked a switch to turn on the greenery and unleash a floral profusion of color. ...

Scientists find how plants grow to escape shade

Apr 15, 2012

Mild mannered though they seem, plants are extremely competitive, especially when it comes to getting their fair share of sunlight. Whether a forest or a farm, where plants grow a battle wages for the sun's ...

Plant asks for care via Flower Power plant sensor

Jul 01, 2014

It looks like a stylish twig but is loaded with high technology: we're talking about the Flower Power, a plant sensor produced by French company Parrot which uses a handy app to tell people exactly when a ...

Recommended for you

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0