Graphene surfaces on photonic racetracks

Jul 28, 2014 by Daniel Cochlin

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Just as information can be carried by electrons in metal wires in a microchip, photons of light can carry information through silicon waveguides to form a photonic microchip. Photonic microchips are often regarded as the future of computer processing and telecommunications because of the vastly increased speeds of operation and bandwidth enhancements.

Perhaps more surprisingly, they are also finding applications as highly sensitive bio-chemical sensor devices.

In this work led by University of Manchester scientists Dr Aravind Vijayaraghavan and Dr Iain Crowe in collaboration with scientists from University of Southampton, graphene coatings have been applied to what are known as 'racetrack resonators' – loops shaped like oval racetracks – to form a potentially novel device architecture.

Dr Vijayaraghavan explains: "When light travels around such a racetrack, some of the light 'leaks' out of the waveguide surface, and this 'evanescent field' can be used for chemical sensing applications. A coating of graphene on the surface of a waveguide can be used to add further capability to such a sensor, such as making it more sensitive and selective.

"In this paper, we have calculated how much light is absorbed by the graphene when it coats the waveguide, and recommend optimum conditions for the graphene coating to serve as a sensor enhancement layer."

Dr Crowe added: "The addition of the graphene layer to our dramatically alters the way the light is guided through the device meaning that the light will interact even more strongly with surface deposited molecules, when employed in a sensor device.

"This strong interaction between the light and the layer means that the device could also be used to improve the detection of light itself, at very low levels and across a broad range of frequencies when employed in a device known as a 'photo-detector'.

Explore further: A nanosensor to identify vapors based on a graphene-silicon heterojunction Schottky diode

add to favorites email to friend print save as pdf

Related Stories

Chemical sensor on a chip

Jun 11, 2014

Using miniaturized laser technology, a tiny sensor has been built at the Vienna University of Technology which can test the chemical composition of liquids.

'Tense' graphene joins forces with gold nano-antennas

Oct 04, 2013

(Phys.org)—Graphene can be used to investigate how light interacts with nano-antennas, potentially increasing the efficiency of solar cells and photo detectors, University of Manchester researchers have ...

Resonant energy transfer from quantum dots to graphene

May 22, 2014

Semiconductor quantum dots (QDs) are nanoscale semiconductors that exhibit size dependent physical properties. For example, the color (wavelength) of light that they absorb changes dramatically as the diameter ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.