New catalyst converts carbon dioxide to fuel

July 30, 2014

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer to commercial viability.

Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering, and his coworkers developed a unique two-step catalytic process that uses and an ionic liquid to "reduce," or transfer electrons, to in a chemical reaction. The new improves efficiency and lowers cost by replacing expensive metals like gold or silver in the reduction reaction.

The study was published in the journal Nature Communications on July 30.

The discovery is a big step toward industrialization, said Mohammad Asadi, UIC graduate student and co-first author on the paper.

"With this catalyst, we can directly reduce carbon dioxide to syngas without the need for a secondary, expensive gasification process," he said. In other chemical-reduction systems, the only reaction product is carbon monoxide. The new catalyst produces syngas, a mixture of carbon monoxide plus hydrogen.

The high density of loosely bound, energetic d-electrons in molybdenum disulfide facilitates charge transfer, driving the reduction of the carbon dioxide, said Salehi-Khojin, principal investigator on the study.

"This is a very generous material," he said. "We are able to produce a very stable reaction that can go on for hours."

"In comparison with other two-dimensional materials like graphene, there is no need to play with the chemistry of molybdenum disulfide, or insert any host materials to get catalytic activity," said Bijandra Kumar, UIC post-doctoral fellow and co-first author of the paper.

"In noble metal catalysts like silver and gold, catalytic activity is determined by the crystal structure of the metal, but with molybdeneum disulfide, the catalytic activity is on the edges," said graduate student Amirhossein Behranginia, a coauthor on the paper. "Fine-tuning of the edge structures is relatively simple. We can easily grow the molybdenum disulfide with the edges vertically aligned to offer better catalytic performance."

The proportion of to hydrogen in the syngas produced in the reaction can also be easily manipulated using the new catalyst, said Salehi-Khojin.

"Our whole purpose is to move from laboratory experiments to real-world applications," he said. "This is a real breakthrough that can take a waste gas—carbon dioxide—and use inexpensive catalysts to produce another source of energy at large-scale, while making a healthier environment."

Explore further: New method for producing clean hydrogen

More information: Nature Communications 30 Jul 2014 DOI: 10.1038/ncomms5470

Related Stories

New method for producing clean hydrogen

May 21, 2013

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications.

New catalyst could cut cost of making hydrogen fuel

July 2, 2013

( —A discovery at the University of Wisconsin-Madison may represent a significant advance in the quest to create a "hydrogen economy" that would use this abundant element to store and transfer energy.

Process holds promise for production of synthetic gasoline

December 2, 2013

A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

Ionic liquid boosts efficiency of CO2 reduction catalyst

June 9, 2014

( —Wouldn't it be nice to use solar- or wind-generated electricity to turn excess carbon dioxide—one of the gases trapping heat in Earth's atmosphere—into fuels and other useful chemicals? The process would ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1.5 / 5 (2) Jul 30, 2014
Whatever catalyst you use, carbon dioxide CANNOT be split into carbon monoxide and hydrogen (syngas) because THERE IS NO HYDROGEN IN IT!!! This is supposed to be a scientific site, please check your articles for a minimum of scientific correctness.
1 / 5 (4) Jul 30, 2014
We cannot convert the carbon dioxide into syngas or whatever else energetically richer mixture without adding of energy, i.e. without introduction of exactly the reason, for which the carbon dioxide gets produced. No catalyst can reverse the energy flux, it can only accelerate it.
4.8 / 5 (6) Jul 30, 2014
I'm pretty sure this is done in the context of another material, probably water. Plenty of hydrogen there!

From the abstract : We uncover that ​molybdenum disulphide shows superior ​carbon dioxide reduction performance compared with the noble metals with a high current density and low overpotential (54 mV) in an ionic liquid.

Ionic liquid = Water with junk in it.
1 / 5 (3) Jul 30, 2014
@Scottingham: So they'll only have to correct the title...
5 / 5 (5) Jul 30, 2014
The catalyst does the conversion, but not on its own. That's not what a catalyst is. It's a facilitator. It speeds up the reaction without being consumed itself.

@ pexeso .. it doesn't reverse the energy flux, but reduces the requirement. Yes energy is still required, but now it's a lot less!
Jul 30, 2014
This comment has been removed by a moderator.
Jul 30, 2014
This comment has been removed by a moderator.
Jul 30, 2014
This comment has been removed by a moderator.
Jul 30, 2014
This comment has been removed by a moderator.
not rated yet Jul 31, 2014
The link below describes a process whereby a (depleted) uranium complex can facilitate bringing two carbon dioxide molecules together to form oxalate. This molecule has a carbon-carbon bond. Apparently that is pretty tricky to do. Then they propose to substitute hydrogen for the oxygen to create a hydrocarbon. Yes, that is the reverse of burning, so there has to be an energy input.
Half the story is free to view, the rest is behind a paywall. Hey, I am not a chemist, but it all looks good to me.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.