Blood flow lends insights to bird flight and motion

July 23, 2014 by Chris Thomas
Four species of moa bird compared to a human. Numbers 2-4 were among the eight species of moa studied. 1. Dinornis novaezelandiae (3 meters tall). 2. Emeus crassus (1.8 meters tall). 3. Anomalopteryx didiformis (1.3 meters). 4. Dinornis robustus (3.5 meters tall). Credit: Wikimedia Commons

The blood flow to leg bones in birds has been shown to correlate to their locomotion patterns.

Researchers at the Universities of Western Australia and Adelaide compared volant (flying) and cursorial (running) by estimating blood flow from the size of the nutrient foramen (hole) in the femur. The artery supplying the bone passes through this hole.

They looked at 100 species of and measured the area of the foramen opening, which represented the size of the blood vessel passing through it, and also measured volume and mass of the femur.

When the effect of body size was taken into account, the researchers found the blood flow index of the nutrient foramen was about two times larger in birds that move primarily by running than in birds that mainly fly.

UWA's Shane Maloney says this made sense, given the role blood flow plays in remodelling mammalian bones, but it had never been demonstrated before in birds.

"Intriguingly, estimated blood flow rate to the femur of birds was about twice that of mammals, possibly because birds use only two legs during locomotion, while mammals usually use four," Professor Maloney says.

"We knew cursorial species put much greater stresses on their legs than volant species and an important driver of blood flow is the repair of damage caused by those stresses.

"In cursorial species we predicted more damage, which would require higher , leading to larger foramen, and that's what we found."

Blood flow measure used to classify extinct birds

A fellow author also measured foramen size in well-preserved fossil bones of moa (extinct giant birds of New Zealand).

"Because we can't go out and measure the physiology of we need to find ways to assess how they functioned," Prof Maloney says.

"One way is to use differences in living birds to make predictions about the way characteristics vary between different classifications, such as flying versus running, and also between cold-blooded reptiles and warm-blooded animals.

"When we find certain characteristics predict which classification a mammal or bird or reptile belongs to, we can use those characteristics in extinct animals to conclude what classification they fit into."

Professor Maloney says an interesting finding was the possible differences in foramen size between sexes in birds.

"One hypothesis is the necessity for female birds to mobilise calcium from bone for egg shell formation, a requirement that doesn't exist in males," he says.

"If this prediction turns out to be true, then we may have discovered a way to sex the fossils of egg-laying animals."

Explore further: Holes in fossil bones reveal dinosaur activity

More information: Blood flow for bone remodelling correlates with locomotion in living and extinct birds. Allan GH, et al. J Exp Biol. 2014 Jun 4. pii: jeb.102889. [Epub ahead of print] www.ncbi.nlm.nih.gov/pubmed/24902751

Related Stories

Egg hunt to find Ice Age parents

June 24, 2014

(Phys.org) —The hunt is on to find the rightful parents of a fossil egg that reputedly belongs to an extinct ancient bird from the Australian Ice Age.

Recommended for you

Some vaccines support evolution of more-virulent viruses

July 27, 2015

Scientific experiments with the herpesvirus such as the one that causes Marek's disease in poultry have confirmed, for the first time, the highly controversial theory that some vaccines could allow more-virulent versions ...

Mammoths killed by abrupt climate change

July 23, 2015

New research has revealed abrupt warming, that closely resembles the rapid man-made warming occurring today, has repeatedly played a key role in mass extinction events of large animals, the megafauna, in Earth's past.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.