Adding water increases effectiveness of sunscreen

July 8, 2014

Researchers at the University of Amsterdam have established that a common protective ingredient in sunscreens reacts differently to UV radiation than previously assumed. This leads to a decreasing efficacy and might induce harmful side effects. The Amsterdam chemists also found that adding some water can solve the issue, ultimately leading to a more effective sunscreen. They have just published their results in the Journal of Physical Chemistry Letters.

By applying state-of-the-art molecular spectroscopy researchers at the Van 't Hoff Institute of Molecular Sciences have investigated the behaviour of the octyl methoxycinnamate (OMC) molecule, a common sunscreen ingredient used for blocking UV-B radiation. They made the remarkable discovery that after the absorption of the UV-light the OMC molecule does not directly dissipate the extra energy in the form of heat. Instead, it stays in an excited 'dark' state for an extended period of time.

According to professor Wybren Jan Buma, heading the Molecular Photonics research project, this implies that the OMC molecule is prone to displaying undesirable reactivity. Indeed, chemists of the University of California at Riverside already have published research on the formation of active oxygen species in UV-radiated OMC-containing sunscreens. 'Our research provides a nice explanation for this phenomenon', says Buma Just add The researchers expect that reducing the reactivity of OMC would lead to a better UV-blocking capacity. In their article in the Journal of Physical Chemistry Letters, published online last week, the UvA researchers present a way to do just that.

PhD student Eric Tan, who performed the research together with laser engineer Michiel Hilbers, discovered that the presence of water molecules facilitates the OMC molecule in returning instantly to its stable electronic ground state. This means that adding water to the sunscreen formulation should significantly add to its performance. For this the researchers propose to employ reverse micelles that make it possible to 'embed' nanodroplets of polar water in the predominantly nonpolar mixture.

Explore further: Barrier reef corals deliver world first for sunscreen

More information: Eric M.M. Tan, Michiel Hilbers, Wybren Jan Buma: "Excited state dynamics of isolated and microsolvated cinnamate-based UV-B sunscreens," J. Phys. Chem. Lett., 2014, 5, pp 2464–2468 DOI: 10.1021/jz501140b

Related Stories

Barrier reef corals deliver world first for sunscreen

August 2, 2013

CSIRO, in partnership with skincare company Larissa Bright Australia, has created the world's first UVA/UVB sunscreen filters which mimic the natural sun protection used by corals on the Great Barrier Reef.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.