Using silicon dioxide as a binding layer for replacement bone prosthetics

June 24, 2014

Using the stuff of sand, silicon dioxide, as a binding layer for replacement bone prosthetics could allow more biocompatible artificial joints to be manufactured as well as reducing the risk of post-operative infection, according to research published in the International Journal of Surface Science and Engineering.

The metals titanium and tantalum are widely used to make replacement implants for diseased or damaged bone, in the classic , for instance. Unfortunately, a smooth , while long-lasting and wear resistant is not entirely biocompatible so manufacturers are developing materials – such as the bony mineral – that can be used to coat such implants to allow the body to accept the prosthetic and for cells and blood vessels to accommodate it more effectively. Unfortunately, a smooth metal surface is also relatively non-stick when it comes to accepting appropriately biocompatible materials.

Researchers at Swinburne University of Technology in Hawthorn, Victoria, Australia, have demonstrated that they can deposit a thin layer of , the main component of sand and glass, on to the metal surface. They use a vacuum technique known as electron beam evaporation to create this thin coating. They can then successfully spray this surface with hydroxyapatite using magnetron sputtering to create a composite coating on the implant metal just 200 nanometres thick.

There is an additional problem regarding . The smoothness of the metal surface is a hindrance when it comes to the body incorporating the prosthetic, but at the same time this prevent pathogenic bacteria from adhering to the joint and causing serious infection around the replacement bone. By adding a more biocompatible layer to the metal this could theoretically provide a surface to which bacteria might stick. The team hoped that the nanoscopic nature of their composite might preclude this hindrance. As such, they tested the metal coated with the silica-hydroxyapatite layer against the invasive microbes Pseudomonas aeruginosa and Staphylococcus aureus and found that neither were able to adhere nor to grow on this surface. Indeed, there was some growth on uncoated , suggesting that a coated implant would not only be more biocompatible to the patient but would lower the risk of infection significantly.

Explore further: Crowning glory: Bonelike coating for dental implants makes everyone smile

More information: "Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum" in Int. J. Surface Science and Engineering, 2014, 8, 255-263. www.inderscience.com/info/inarticle.php?artid=60489

Related Stories

3-D printed implants may soon fix complex injuries

December 12, 2013

In an age where 3-D printers are becoming a more and more common tool to make custom designed objects, some researchers are using the technology to manufacture replacement parts for the most customized and unique object of ...

New optimized coatings for implants reduce risk of infection

December 18, 2013

Implants are commonly made from metals such as titanium alloys. These materials are being made porous during processing used to prepare them for medical use. Whereas this is important to ensure good contact between the implant ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.