Using silicon dioxide as a binding layer for replacement bone prosthetics

Jun 24, 2014

Using the stuff of sand, silicon dioxide, as a binding layer for replacement bone prosthetics could allow more biocompatible artificial joints to be manufactured as well as reducing the risk of post-operative infection, according to research published in the International Journal of Surface Science and Engineering.

The metals titanium and tantalum are widely used to make replacement implants for diseased or damaged bone, in the classic , for instance. Unfortunately, a smooth , while long-lasting and wear resistant is not entirely biocompatible so manufacturers are developing materials – such as the bony mineral – that can be used to coat such implants to allow the body to accept the prosthetic and for cells and blood vessels to accommodate it more effectively. Unfortunately, a smooth metal surface is also relatively non-stick when it comes to accepting appropriately biocompatible materials.

Researchers at Swinburne University of Technology in Hawthorn, Victoria, Australia, have demonstrated that they can deposit a thin layer of , the main component of sand and glass, on to the metal surface. They use a vacuum technique known as electron beam evaporation to create this thin coating. They can then successfully spray this surface with hydroxyapatite using magnetron sputtering to create a composite coating on the implant metal just 200 nanometres thick.

There is an additional problem regarding . The smoothness of the metal surface is a hindrance when it comes to the body incorporating the prosthetic, but at the same time this prevent pathogenic bacteria from adhering to the joint and causing serious infection around the replacement bone. By adding a more biocompatible layer to the metal this could theoretically provide a surface to which bacteria might stick. The team hoped that the nanoscopic nature of their composite might preclude this hindrance. As such, they tested the metal coated with the silica-hydroxyapatite layer against the invasive microbes Pseudomonas aeruginosa and Staphylococcus aureus and found that neither were able to adhere nor to grow on this surface. Indeed, there was some growth on uncoated , suggesting that a coated implant would not only be more biocompatible to the patient but would lower the risk of infection significantly.

Explore further: New technology for durable spinal disc implants

More information: "Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum" in Int. J. Surface Science and Engineering, 2014, 8, 255-263. www.inderscience.com/info/inar… icle.php?artid=60489

add to favorites email to friend print save as pdf

Related Stories

New technology for durable spinal disc implants

May 29, 2014

Artificial joints have a limited lifespan. After a few years, many hip and knee joints have to be replaced. Much more complex are intervertebral disc implants, which cannot easily be replaced after their ...

3-D printed implants may soon fix complex injuries

Dec 12, 2013

In an age where 3-D printers are becoming a more and more common tool to make custom designed objects, some researchers are using the technology to manufacture replacement parts for the most customized a ...

Recommended for you

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

Aug 22, 2014

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0