Scientists provide new insights into biomass breakdown

Jun 06, 2014

Scientists at the University of York are playing a key role in the quest for a better understanding of how a recently discovered family of enzymes can degrade hard-to-digest biomass into its constituent sugars.

The enzymes – lytic polysaccharide monooxygenases (LPMOs) – are secreted by both fungi and bacteria and have the ability to 'chip away' at cellulose and other intractable materials. This allows such as plant stems, and cardboard waste, as well as other tricky polysaccharides such as insect/crustacean shells, to be broken down.

Finding a way of breaking down cellulosic materials into their constituent sugars to allow them to be fermented through to bioethanol is a key aim for second-generation biofuel development.

In a recent article in the Proceedings of the National Academy of Sciences (PNAS), an international team of researchers, including Professor Paul Walton and Professor Gideon Davies from York, provided important new information on how LPMOs work.

The team – which included scientists from the United States, Denmark and the UK – carried out a detailed investigation of how the enzymes use oxygen from the air to create a very reactive entity. This oxygen species then chips away at cellulose, allowing the difficult-to-degrade biomass to be broken down.

The on-going York research into LPMOs, which is led by Professor Walton and Professor Davies from the Department of Chemistry, is part of Critical Enzymes for Sustainable Biofuels from Cellulose (CESBIC), a collaborative project funded by the European Research Area Industrial Biotechnology network (ERA-IB).

Professor Walton said: "The ability to ferment cellulose is important as it opens up new possibilities in the production of bioethanol from sustainable sources. Through our collaborative research we are starting to uncover exactly the details of how LPMOs work."

The recent research published in the PNAS article, builds on work reported earlier this year in Nature Chemical Biology, which was led by York, and involved Professor Bernard Henrissat, of CNRS, Aix-Marseille Université, Marseille, France. The Nature Chemical Biology article reported on the discovery of an important new family of LPMO able to break down hard-to-digest biomass. This work is funded by the Biotechnology and Biosciences Research Council (BBSRC).

Professor Davies said: "To begin fermenting materials such as wood chips or plant stems, there needs to be a way of breaking into it. The action of an LPMO makes a scratch on the biomass surface which provides an entry point for other enzymes. Understanding how LPMOs work will aid the quest for second generation biofuel production."

The most recent research reported in PNAS was led by Stanford University, USA. As well as York, it involved Novozymes, Denmark and the University of Hull.

Explore further: Targeted strategies improve efficacy of enzymes to convert biomass to biofuels

add to favorites email to friend print save as pdf

Related Stories

Scientists make significant step forward in biofuels quest

Dec 22, 2013

Scientists at the University of York have made a significant step in the search to develop effective second generation biofuels. Researchers from the Department of Chemistry at York have discovered a family of enzymes that ...

New protein probes find enzymes for biofuel production

Feb 06, 2013

New protein probes are now helping scientists find the best biomass-to-biofuel production enzymes that nature has to offer. Turning biomass into biofuel hinges on the breakdown of the energy-rich primary ...

Recommended for you

Scientists target mess from Christmas tree needles

16 hours ago

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.