New generation of aerial robots for high-risk service tasks

Jun 12, 2014

The need for robots able to carry out high-risk service tasks, such as the inspection of power plants and the cleaning of skyscrapers, is growing. Robots that actively interact with the environment without being constrained on the ground are extremely well suited to such tasks. Doctoral candidate Abeje Yenehun Mersha designed novel human-in-the-loop control architectures for this new and advanced generation of aerial service robots. Mr. Mersha is affiliated with the CTIT research institute of the University of Twente. He is due to obtain his doctoral degree on Friday June 13th.

Abeje Yenehun Mersha's research focuses mainly on the teleoperation of aerial service robots. These types of robots are poised to be fundamental parts of tomorrow's service applications for their low-cost, safety, and efficiency. These robots support humans in performing various tasks that require the ability to actively interact with remote environments while staying airborne.

An extension of the operator

Mersha developed different teleoperation control architectures that allow an operator to remotely supervise an aerial service robot while performing a complex service task. Mersha explains: "The human operator does not need be a trained pilot to operate the aerial robot, but an expert in the required service task. The aerial robot can be seen as an extension of the operator's own hand, which is being remotely controlled in a cluttered by using a haptic device." Mersha continues: "The overall teleoperation control architecture should guarantee a stable behavior both during the free-flight of the aerial robot and during the interaction with the remote environment, while guaranteeing a good level of transparency even in the presence of time-delays and other network-induced imperfections".

Multi-modal haptic feedback

Control strategies that rely upon a cooperative and adaptive interaction between the on-board automatic control of the aerial robot and the human operator, are essential for the accomplishment of service tasks. In the case of traditional aerial robots, the operator becomes aware of the states of the autonomous aerial robot through camera images (visual feedback). However, due to the complexity of the service tasks, this form of feedback alone might not be adequate. Through a haptic device, used to bilaterally interact with the remotely controlled aerial robot, operators are now able to actually feel how the task is progressing. So, for example, if the interacts with the environment and is no longer able to move forward, the operator feels a resistance in the form of an opposing force via the haptic interface. As such, the operator feels like he is actually interacting with the remote environment directly. Moreover, having received this force feedback, together with other feedbacks, such as vision and vibro-tactile information, the awareness of the operator significantly increases. This helps the operator to make a better decision in order to accomplish the task effectively and efficiently.

Time delay

Mersha carried out a variety of simulations and experiments in order to test the theory in practice. Among others, he carried out the longest intercontinental haptic teleoperation of in cooperation with the Australian National University to assess his solution for dealing with time delays and other network-induced imperfections. The experiment involved an operator located in Enschede, The Netherlands, flying an aerial in Canberra, Australia, that performs a maneuvering task in cluttered environment while avoiding obstacles. The short film shows the experiment.

Explore further: Engineers debut adhesive material based on gecko feet

Related Stories

Robot warriors pose ethical dilemna

May 27, 2014

With the increasing use of drones in military operations, it is perhaps only a matter of time before robots replace soldiers. Whether fully automated war is on the immediate horizon, one researcher says it's not too early ...

Image: ESA's telerobotic robot hand

May 01, 2014

(Phys.org) —As engineer Manuel Aiple moves his gauntleted hand, the robotic hand a few metres away in ESA's telerobotics laboratory follows in sync.

The human touch makes robots defter

Nov 07, 2013

Cornell engineers are helping humans and robots work together to find the best way to do a job, an approach called "coactive learning."

Recommended for you

Cheetah robot lands the running jump (w/ Video)

13 hours ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Robot swarms use collective cognition to perform tasks

May 28, 2015

The COCORO project's robot swarms not only look like schools of fish, they behave like them too. The project developed autonomous robots that interact with each other and exchange information, resulting in ...

Job-sharing with nursing robot

May 27, 2015

Given the aging of the population and the low birthrate both in Japan and elsewhere, healthcare professionals are in short supply and unevenly distributed, giving rise to a need for alternatives to humans ...

Robots can recover from damage in minutes (w/ Video)

May 27, 2015

Robots will one day provide tremendous benefits to society, such as in search and rescue missions and putting out forest fires—but not until they can learn to keep working if they become damaged.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.