New breed of solar cells: Quantum-dot photovoltaics set new record for efficiency in such devices

May 28, 2014 by David L. Chandler
Researcher displays a sample of the record-setting new solar cell on the MIT campus. Credit: Chia-Hao Chuang

Solar-cell technology has advanced rapidly, as hundreds of groups around the world pursue more than two dozen approaches using different materials, technologies, and approaches to improve efficiency and reduce costs. Now a team at MIT has set a new record for the most efficient quantum-dot cells—a type of solar cell that is seen as especially promising because of its inherently low cost, versatility, and light weight.

While the overall efficiency of this cell is still low compared to other types—about 9 percent of the energy of sunlight is converted to electricity—the rate of improvement of this technology is one of the most rapid seen for a solar technology. The development is described in a paper, published in the journal Nature Materials, by MIT professors Moungi Bawendi and Vladimir Bulović and graduate students Chia-Hao Chuang and Patrick Brown.

The new process is an extension of work by Bawendi, the Lester Wolfe Professor of Chemistry, to produce quantum dots with precisely controllable characteristics—and as uniform thin coatings that can be applied to other materials. These minuscule particles are very effective at turning light into electricity, and vice versa. Since the first progress toward the use of quantum dots to make , Bawendi says, "The community, in the last few years, has started to understand better how these cells operate, and what the limitations are."

The new work represents a significant leap in overcoming those limitations, increasing the current flow in the cells and thus boosting their overall efficiency in converting sunlight into electricity.

Many approaches to creating low-cost, large-area flexible and lightweight solar cells suffer from serious limitations—such as short operating lifetimes when exposed to air, or the need for high temperatures and vacuum chambers during production. By contrast, the new process does not require an inert atmosphere or high temperatures to grow the active device layers, and the resulting cells show no degradation after more than five months of storage in air.

Bulović, the Fariborz Maseeh Professor of Emerging Technology and associate dean for innovation in MIT's School of Engineering, explains that thin coatings of quantum dots "allow them to do what they do as individuals—to absorb light very well—but also work as a group, to transport charges." This allows those charges to be collected at the edge of the film, where they can be harnessed to provide an electric current.

The new work brings together developments from several fields to push the technology to unprecedented efficiency for a quantum-dot based system: The paper's four co-authors come from MIT's departments of physics, chemistry, materials science and engineering, and electrical engineering and computer science. The solar cell produced by the team has now been added to the National Renewable Energy Laboratories' listing of record-high efficiencies for each kind of solar-cell technology.

The overall efficiency of the cell is still lower than for most other types of solar cells. But Bulović points out, "Silicon had six decades to get where it is today, and even silicon hasn't reached the theoretical limit yet. You can't hope to have an entirely new technology beat an incumbent in just four years of development." And the new technology has important advantages, notably a manufacturing process that is far less energy-intensive than other types.

Chuang adds, "Every part of the cell, except the electrodes for now, can be deposited at room temperature, in air, out of solution. It's really unprecedented."

The system is so new that it also has potential as a tool for basic research. "There's a lot to learn about why it is so stable. There's a lot more to be done, to use it as a testbed for physics, to see why the results are sometimes better than we expect," Bulović says.

A companion paper, written by three members of the same team along with MIT's Jeffrey Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering, and three others, appears this month in the journal ACS Nano, explaining in greater detail the science behind the strategy employed to reach this efficiency breakthrough.

The new work represents a turnaround for Bawendi, who had spent much of his career working with quantum dots. "I was somewhat of a skeptic four years ago," he says. But his team's research since then has clearly demonstrated ' potential in solar cells, he adds.

Arthur Nozik, a research professor in chemistry at the University of Colorado who was not involved in this research, says, "This result represents a significant advance for the applications of quantum-dot films and the technology of low-temperature, solution-processed, quantum-dot photovoltaic cells. … There is still a long way to go before quantum-dot solar cells are commercially viable, but this latest development is a nice step toward this ultimate goal."

Explore further: Nontoxic quantum dot research improves solar cells

More information: "Improved performance and stability in quantum dot solar cells through band alignment engineering." Chia-Hao M. Chuang, et al. Nature Materials (2014) DOI: 10.1038/nmat3984. Received 06 December 2013 Accepted 15 April 2014 Published online 25 May 2014

"Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange." Patrick R. Brown, Donghun Kim, Richard R. Lunt, Ni Zhao, Moungi G. Bawendi, Jeffrey C. Grossman, and Vladimir Bulovic. ACS Nano May 13, 2014. DOI: 10.1021/nn500897c

add to favorites email to friend print save as pdf

Related Stories

New solar-cell design based on dots and wires

Mar 25, 2013

Using exotic particles called quantum dots as the basis for a photovoltaic cell is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight ...

Nontoxic quantum dot research improves solar cells

Dec 11, 2013

Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corporation.

New nanomaterial increases yield of solar cells

Aug 26, 2013

Researchers from the FOM Foundation, Delft University of Technology, Toyota Motor Europe and the University of California have developed a nanostructure with which they can make solar cells highly efficient. ...

Recommended for you

PPPL studies plasma's role in synthesizing nanoparticles

14 hours ago

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

First ab initio method for characterizing hot carriers

Jul 17, 2014

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have developed ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (4) May 29, 2014
Hi Everyone! I've got a better solution! My name is Kris Kuehl. I am merely one man. I want to give you my invention that you can make too. There's no patent on it. First one to get a patent shall be the inventor. I just want the world to accept my gift for free. It only cost me about 777.00 dollars to make. It generates free electricity forever, without the need for oil, gasoline, friction, pollution, a supercollision, NOR IRAN. Somebody tell Tesla to start engineering "living" cars using my technology, to save themselves from building charging stations.
Here's How:
1. A 12amp car battery from wal-mart
2. A power inverter to plug step 3 into it.
3. A skilsaw circular saw that spins at least 3600 rpms. If the powersaw is too loud, try to get a quiet electric motor but you'll need to get an online 40amp tractor battery to power it, and it would have to be pulley driven, unless we can all convince leeson motors to bore a 5/8 inch thread hole in the axle.
4. A 5/8 inch axle bolt.
5. A generator head from part no. 165913 or 165928 for dryers and house needs.
6. A battery recharger from wal-mart.
Simply link those components together in that order and back into the battery, and everyone shall have infinite free electricity. PLEASE visit my website to see video evidence. I also have other SIGNIFICANT scientific discoveries there. Bless you, and I hope you have a very casual day!

Kris Kuehl please come...
5 / 5 (2) May 29, 2014
I hope the mods keep the free energy crap online.
So, one question. Since it only costs $777 why not sell eternal batteries? These inventors always want to sell the plans, but not the finished product. Wonder why that is...
5 / 5 (2) May 29, 2014
Back on topic...
So WTF is the efficiency?
not rated yet Jun 03, 2014
9% :/ pretty much useless atm....