New insight into thermoelectric materials may boost green technologies

May 14, 2014
Lithium purple-bronze (LiPB) is a thermoelectric material comprised of aligned conducting, zig-zag chains of molybdenum and oxygen (left image, pink and white circles with green bonds). When an electric current was applied in a direction slightly misaligned with the chains (depicted as gray lines, right image), heat flowed perpendicular to the current, a phenomenon known as the transverse Peltier effect. The efficiency of this effect in LiPB was among the largest known for a single compound. Credit: Dr. Joshua Cohn, University of Miami

Thermoelectric materials can turn a temperature difference into an electric voltage. Among their uses in a variety of specialized applications: generating power on space probes and cooling seats in fancy cars.

University of Miami (UM) physicist Joshua Cohn and his collaborators report new surprising properties of a metal named lithium purple-bronze (LiPB) that may impact the search for materials useful in , refrigeration, or energy detection. The findings are published in the journal Physical Review Letters.

"If current efficiencies of were doubled, might replace the conventional gas refrigerators in your home," said Cohn, professor and chairman of the UM Department of Physics in the College of Arts and Sciences and lead author of the study. "Converting waste heat into electric power, for example, using vehicle exhaust, is a near-term 'green' application of such materials."

Useful thermoelectric materials produce a large voltage for a given , with the ratio known as "thermopower." LiPB is comprised of aligned conducting chains. The researchers found that this material has very different thermopowers when the temperature difference is applied parallel or perpendicular to the conducting chains. When an was applied in a direction slightly misaligned with the chains, heat flowed perpendicular to the current, a phenomenon known as the "transverse Peltier effect." The efficiency of this effect in LiPB was among the largest known for a single compound. "That such a large directional difference in thermopower exists in a single compound is exceedingly rare and makes applications possible," Cohn said. "This is significant because transverse Peltier devices typically employ a sandwich of different compounds that is more complicated and costly to fabricate."

As their motivation for the work, Cohn noted that metals with a similar electronic structure often exhibit interesting physics and the of LiPB had never been studied in detail. "The present material," he said, "might be useful as it is, but the larger implication of our work is that the ingredients underlying its special properties may serve as a guide to finding or engineering new and improved materials."

Explore further: Large thermoelectric power from a combination of magnets and superconductors

More information: The study is titled "Extreme Thermopower Anisotropy and Interchain Transport in the Quasi-One-Dimensional Metal Li0.9Mo6O17".

add to favorites email to friend print save as pdf

Related Stories

Solving a mystery of thermoelectrics

Apr 29, 2014

Materials that can be used for thermoelectric devices—those that turn a temperature difference into an electric voltage—have been known for decades. But until now there has been no good explanation for ...

Thermoelectric materials can be much more efficient

Mar 25, 2014

Researchers from the University of Twente's MESA+ research institute have managed to significantly improve the efficiency of a thermoelectric material. Because of their unique qualities, these materials can ...

Recommended for you

'Comb on a chip' powers new atomic clock design

1 hour ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

1 hour ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

1 hour ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

4 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 21, 2014
Very informative post about thermoelectric materials. Using a thermoelectric materials that's really good because it can turn a temperature difference into an electric voltage. It converts waste heat into the electricity that's great thing about it. To know some new featured Thermoelectric devices, you can visit http://www.analog...ule.html .