New insight into thermoelectric materials may boost green technologies

May 14, 2014
Lithium purple-bronze (LiPB) is a thermoelectric material comprised of aligned conducting, zig-zag chains of molybdenum and oxygen (left image, pink and white circles with green bonds). When an electric current was applied in a direction slightly misaligned with the chains (depicted as gray lines, right image), heat flowed perpendicular to the current, a phenomenon known as the transverse Peltier effect. The efficiency of this effect in LiPB was among the largest known for a single compound. Credit: Dr. Joshua Cohn, University of Miami

Thermoelectric materials can turn a temperature difference into an electric voltage. Among their uses in a variety of specialized applications: generating power on space probes and cooling seats in fancy cars.

University of Miami (UM) physicist Joshua Cohn and his collaborators report new surprising properties of a metal named lithium purple-bronze (LiPB) that may impact the search for materials useful in , refrigeration, or energy detection. The findings are published in the journal Physical Review Letters.

"If current efficiencies of were doubled, might replace the conventional gas refrigerators in your home," said Cohn, professor and chairman of the UM Department of Physics in the College of Arts and Sciences and lead author of the study. "Converting waste heat into electric power, for example, using vehicle exhaust, is a near-term 'green' application of such materials."

Useful thermoelectric materials produce a large voltage for a given , with the ratio known as "thermopower." LiPB is comprised of aligned conducting chains. The researchers found that this material has very different thermopowers when the temperature difference is applied parallel or perpendicular to the conducting chains. When an was applied in a direction slightly misaligned with the chains, heat flowed perpendicular to the current, a phenomenon known as the "transverse Peltier effect." The efficiency of this effect in LiPB was among the largest known for a single compound. "That such a large directional difference in thermopower exists in a single compound is exceedingly rare and makes applications possible," Cohn said. "This is significant because transverse Peltier devices typically employ a sandwich of different compounds that is more complicated and costly to fabricate."

As their motivation for the work, Cohn noted that metals with a similar electronic structure often exhibit interesting physics and the of LiPB had never been studied in detail. "The present material," he said, "might be useful as it is, but the larger implication of our work is that the ingredients underlying its special properties may serve as a guide to finding or engineering new and improved materials."

Explore further: Solving a mystery of thermoelectrics

More information: The study is titled "Extreme Thermopower Anisotropy and Interchain Transport in the Quasi-One-Dimensional Metal Li0.9Mo6O17".

add to favorites email to friend print save as pdf

Related Stories

Solving a mystery of thermoelectrics

Apr 29, 2014

Materials that can be used for thermoelectric devices—those that turn a temperature difference into an electric voltage—have been known for decades. But until now there has been no good explanation for ...

Thermoelectric materials can be much more efficient

Mar 25, 2014

Researchers from the University of Twente's MESA+ research institute have managed to significantly improve the efficiency of a thermoelectric material. Because of their unique qualities, these materials can ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hinesdarrel
not rated yet Jun 21, 2014
Very informative post about thermoelectric materials. Using a thermoelectric materials that's really good because it can turn a temperature difference into an electric voltage. It converts waste heat into the electricity that's great thing about it. To know some new featured Thermoelectric devices, you can visit http://www.analog...ule.html .

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.