Antibiotic resistance genes are essentially everywhere

May 08, 2014

The largest metagenomic search for antibiotic resistance genes in the DNA sequences of microbial communities from around the globe has found that bacteria carrying those vexing genes turn up everywhere in nature that scientists look for them. The findings reported in Current Biology on May 8 add to evidence showing just how common and abundant those resistance genes really are in natural environments.

This big-picture, ecological view on a growing healthcare concern emphasizes the important relationship between in the clinic and environmental microbiology, the researchers say.

"While the environment is known to harbor antibiotic-resistant strains of bacteria, as proven by many preceding studies, we did not really know the extent of their abundance," says Joseph Nesme of the Université de Lyon in France. "The fact that we were able to detect antibiotic resistance genes at relatively important abundance in every environment tested is certainly our most striking result."

The researchers, including Nesme and senior author of the study Pascal Simonet, took advantage of the ever-growing reams of existing next-generation sequencing data that are freely available in public repositories together with information about antibiotic resistance genes found in pathogens infecting patients in the clinic.

"Our strategy was simply to use all these pre-existing data and combine them to answer more precisely the question of antibiotic resistance prevalence in the environment," Nesme says.

The scientists' analyses detected antibiotic resistance gene determinants in all 71 environments represented in the public data, including soil, oceans, and human feces. Samples collected from soil contained the most diverse pool of resistance genes, the authors found. The most common types of resistance uncovered were efflux pumps and other genes conferring resistance to vancomycin, tetracycline, or beta-lactam antibiotics, which are in common use in veterinary and human healthcare.

All this, and Simonet says they know that today's technologies are still unable to capture all of the diversity present in the environment. In other words, we're still missing part of the picture.

There is a very good reason microbes would be armed with , the researchers explain. After all, most antibiotics used in medicine are isolated from soil microorganisms, such as bacteria or fungi, in the first place. That means that the were available long before humans put antibiotic drugs into use. Bacteria lacking them to start with can simply borrow them (via horizontal transfer of genes) from those that are better equipped.

Nesme and Simonet say the new findings should come as a plea for a broader ecological perspective on the antibiotic resistance problem.

"It is only with more knowledge on antibiotic resistance dissemination—from the environment to pathogens in the clinic and leading to antibiotic treatment failure rates—that we will be able to produce more sustainable antibiotic drugs," Nesme says.

Explore further: Cow manure harbors diverse new antibiotic resistance genes

More information: Current Biology, Nesme et al.: "Large-scale metagenomic-based study of antibiotic resistance in the environment." http://www.cell.com/current-biology/abstract/S0960-9822(14)00328-5

add to favorites email to friend print save as pdf

Related Stories

Cow manure harbors diverse new antibiotic resistance genes

Apr 22, 2014

Manure from dairy cows, which is commonly used as a farm soil fertilizer, contains a surprising number of newly identified antibiotic resistance genes from the cows' gut bacteria. The findings, reported in mBio the online ...

Global effort is needed to keep antibiotics working

Nov 19, 2013

A global approach is needed to address the unfolding burden of antibiotic resistance, say the authors of a new report, published this week in Lancet Infectious Diseases. The report coincides with the Europe ...

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Recommended for you

Cataloguing 10 million human gut microbial genes

12 hours ago

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

Model evaluates where bioenergy crops grow best

Nov 24, 2014

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.