Precise control of optical frequency on a chip

April 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity frequency modulation (FM). This accomplishment, called microwave frequency synthesis, brought about many advanced technologies now critical to the military, such as wireless communications, radar, electronic warfare, atomic sensors and precise timing. Today, optical communications employ techniques analogous to those of pre-1940 AM radio, due to the inability to control frequency precisely at optical frequencies, which are typically 1,000 times higher than microwaves. The higher frequency of light, however, offers potential for 1,000-fold increase in available bandwidth for communications and other applications.

As both government and commercial need for bandwidth continues to grow, DARPA's new Direct On-chip Digital Optical Synthesizer program seeks to do with light waves what researchers in the 1940s achieved with radio microwaves. Currently, optical frequency synthesis is only possible in laboratories with expensive racks of equipment. If successful, the program would miniaturize optical synthesizers to fit onto microchips, opening up terahertz frequencies for wide application across military electronics systems and beyond.

"The goal of this program is to make optical frequency synthesis as ubiquitous as microwave synthesis is today," said Robert Lutwak, DARPA program manager. "There are significant challenges, but thanks to related DARPA programs POEM, Quasar, ORCHID, PULSE and E-PHI and other advanced laboratory research, technology is at the tipping point where we're ready to attempt miniaturization of optical frequency synthesis on an inexpensive, small, low-power chip."

The basic concept is to create a "gearbox" on a chip that produces laser light with a frequency that is a precise multiple of a referenced , such as is readily available within most existing DoD and consumer electronic systems. The ability to control optical frequency in a widely available microchip could enable a host of advanced applications at much lower cost, including:

  • High-bandwidth (terabit per second)
  • Enhanced chemical spectroscopy, toxin detection and facility identification
  • Improved light detection and ranging (LiDAR)
  • High-performance atomic clocks and inertial sensors for position, navigation and timing (PNT) applications
  • High-performance optical spectrum analysis (OSA)

For example, digital optical synthesizers on a chip could increase accuracy for optical chemical sensing by six orders of magnitude while reducing cost, size and power requirements by many orders of magnitude over current capabilities. These improvements would make it possible to detect adversary chemical production facilities with high sensitivity from much farther away than is possible today.

The program envisions three phases, lasting a total of 42 months. Phase 1 would involve a demonstration of optical synthesis in a laboratory, using low size, weight and power (SWaP) optical components. Phase 2 calls for a demonstration of an integrated electro-optical component. Phase 3 calls for successful demonstration of integrated synthesizer and control electronics meeting all program performance and SWaP metrics.

"We're looking for multidisciplinary teams made up of experts in micro- and nano-fabrication, optics and photonics, and heterogeneous integration to bring the component technologies together," Lutwak said.

Explore further: A quiet phase: NIST optical tools produce ultra-low-noise microwave signals

Related Stories

Tiny sensors put the squeeze on light

October 24, 2013

Microelectromechanical systems, known as MEMS, are ubiquitous in modern military systems such as gyroscopes for navigation, tiny microphones for lightweight radios, and medical biosensors for assessing the wounded. Such applications ...

50 meters of optical fiber shrunk to the size of microchips

November 28, 2013

Long coils of optical waveguides any structure that can guide light, like conventional optical fiber can be used to create a time delay in the transmission of light. Such photonic delays are useful in military application ...

Combs of light accelerate communication

April 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe Institute of Technology ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.