Technologies for the optical characterization of materials at terahertz frequencies

April 18, 2014
Figure 1: The ‘ultra-broadband’ terahertz time-domain spectroscopic ellipsometry system. Credit: Masatsugu Yamashita, RIKEN Center for Advanced Photonics

The noncontact measurement of material properties using light is used in a wide variety of applications, from airport security scanners to medical x-ray imaging and various analytical techniques. Some of the most interesting information is contained in what is known as the terahertz region of the frequency spectrum, but developing broadband spectroscopic techniques for the terahertz regime has proved difficult. Masatsugu Yamashita, Chiko Otani and colleagues from the RIKEN Center for Advanced Photonics and Canon Inc. have now developed a spectroscopy system that operates across an unprecedented range of terahertz and infrared frequencies.

Terahertz light, while potentially very useful for probing , is difficult to handle using optical instruments because it is easily absorbed by many materials. Time-domain is already widely used to measure the optical properties of materials. Measurement of the polarization of light reflected from the sample in comparison to a reference mirror, or ellipsometry, provides even more information. Yamashita and his colleagues combined the two methods for use over a wide range of (Fig. 1).

Precision was a crucial aspect of the system, explains Yamashita. "Conventional terahertz reflection time-domain spectroscopy suffers from positioning error between the sample and the reference mirror, which prevents precise measurement of phase information."

Achieving the necessary micrometer precision across a broad required the use of as few light emitters and detectors as possible, and the use of broadband emitter and detector materials. The researchers used crystals of gallium phosphide or gallium selenide as light emitters, covering an unprecedented frequency range of 0.5–30 terahertz. For detection, Yamashita's team used a film of gallium arsenide, prepared at low temperature to extend its broadband characteristics. The thin film of gallium arsenide was transferred to an optically neutral substrate to avoid unwanted terahertz wave absorption.

The researchers demonstrated the excellent performance of the system across almost the entire operating frequency range. Although some unwanted light absorption in the detector and other optical components remains, which prevents the system's use at certain frequencies, Yamashita is confident that these issues can be overcome by using thinner detector films or different optical components.

Once refined, the 'ultra-broadband' time-domain spectroscopic ellipsometry system could have some significant industrial applications. "An important application of the system," says Yamashita, "is the contactless and nondestructive characterization of carrier transport properties in semiconductors and the conducting polymers used in optoelectronic devices such as mobile-phone displays. This would be indispensable for improving device performance."

Explore further: Fingerprint of dissolved glycine in the Terahertz range explained

More information: Yamashita, M., Takahashi, H., Ouchi, T. & Otani, C. "Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector." Applied Physics Letters 104, 051103 (2014). DOI: 10.1063/1.4862974

Related Stories

Ultra-thin light detectors

March 27, 2014

A new, extremely thin kind of light detectors was created at Vienna University of Technology. Two very different technologies were combined for the first time: metamaterials and quantum cascade structures.

Trapping T-rays for better security scanners

July 11, 2013

(Phys.org) —Medical diagnostic and security scanners with higher sensitivity could result from University of Adelaide research into detecting T-rays (terahertz waves).

Organic crystals put laser focus on magnetism

July 27, 2012

(Phys.org) -- In the first successful experiment of its type at SLAC's Linac Coherent Light Source, scientists used terahertz frequencies of light to change the magnetic state of a sample and then measured those changes with ...

Metamaterial flexible sheets could transform optics

June 6, 2013

(Phys.org) —New ultrathin, planar, lightweight, and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances would boost security ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.