Expanding particles to engineer defects: Researchers find that adding an impurity can create order

April 8, 2014
Expanding particles to engineer defects: Researchers find that adding an impurity can create order
Defects in the crystal destroy the order of six-fold rotational symmetry. The structure on the left displays particles arranged in a pentagonal lattice; the structure on the right is a heptagonal lattice.

Materials scientists have long known that introducing defects into three-dimensional materials can improve their mechanical and electronic properties. Now a new Northwestern study finds how defects affect two-dimensional crystalline structures, and the results hold information for designing new materials.

In packed, two-dimensional crystalline systems, such as in photonic two-dimensional crystals, the particles are organized in hexagonal lattices. One particle is in the center of the hexagon with six neighboring particles around it. A defective lattice is when the center particle has one extra or one fewer neighbor, creating a heptagon or pentagon. Two defects of similar types—two pentagons or two heptagons—will repel each other. Two defects of opposite types—one pentagon and one heptagon—will attract one another and proliferate.

"If there is one heptagon or one pentagon, then the structure is strongly distorted," says the paper's coauthor Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering. "But if you have one pentagon and one heptagon, then the distortion is relieved. The pairs cancel each other out."

Impure particles can cause defects in all types of systems. One impurity is a difference in particle size, which is naturally seen in granular materials, nanoparticles, and colloidal crystals. To see how a size disparity would affect the crystalline order and the system's physical properties, Olvera de la Cruz and postdoctoral fellow Zhenwei Yao devised a model system of soft particles, such as functionalized nanoparticles with grafted chains including nucleic acids or thiols. They made one of the particles in the lattice much larger than the surrounding particles.

"When we expanded one particle, all the neighboring particles were squeezed and stressed," says Yao, coauthor of the paper. "The bigger we made the particle, the more defects it caused."

The larger particle impurity induced defects. Surprisingly, however, instead of repelling one another and distorting the crystalline order, the defects settled into harmony.

"People would expect for them to repel," Olvera de la Cruz says. "But they all came together and arranged to generate a lower energy configuration. The defects around the impurity particles mediate the attractions between impurity particles."

The defects restored order, creating a "screen," or buffer, to protect the rest of the structure from the stress of the added impurity.

This finding could lead to new ways of engineering materials, supporting the Materials Genome Initiative. Creating materials with new properties by adding impurities can be tricky. If the impurities cause defects that induce attractions between impurity particles, then they might create regions where impurities aggregate. "That generates an interface of two materials that can be very damaging," Olvera de la Cruz says. "The impurities have to be very well controlled."

By changing the size of , researchers may be able to engineer in a convenient and precise manner.

Explore further: Slowly cooled DNA transforms disordered nanoparticles into orderly crystal

More information: The research is described in the paper, "Polydisperity-driven topological defects as order-restoring excitations," published online March 24 in the Proceedings of the National Academy of Sciences. www.pnas.org/content/early/2014/03/25/1403679111.abstract

Related Stories

Patterns of particles generated by surface charges

February 4, 2014

Tuning the material structure at the nanoscale level can be really hard to achieve – but what if we had small particles, which assemble all by themselves, creating the required structure? At the Vienna University of Technology ...

Physicists grow pleats in two-dimensional curved spaces

December 23, 2010

(PhysOrg.com) -- A design feature well known in skirts and trousers has now been identified in curved, two-dimensional crystals. As University of Chicago physicist William Irvine and his colleagues report in this week’s ...

Weird science: Crystals melt when they're cooled

May 23, 2013

(Phys.org) —Growing thin films out of nanoparticles in ordered, crystalline sheets, to make anything from microelectronic components to solar cells, would be a boon for materials researchers, but the physics is tricky because ...

Building crystalline materials from nanoparticles and DNA

October 13, 2011

Nature is a master builder. Using a bottom-up approach, nature takes tiny atoms and, through chemical bonding, makes crystalline materials, like diamonds, silicon and even table salt. In all of them, the properties of the ...

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.