Antennae help flies 'cruise' in gusty winds

April 10, 2014
Fruit Fly
Fruit Fly. Credit: UCSD

Due to its well-studied genome and small size, the humble fruit fly has been used as a model to study hundreds of human health issues ranging from Alzheimer's to obesity. However, Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering at Caltech, is more interested in the flies themselves—and how such tiny insects are capable of something we humans can only dream of: autonomous flight. In a report on a recent study that combined bursts of air, digital video cameras, and a variety of software and sensors, Dickinson and his team explain a mechanism for the insect's "cruise control" in flight—revealing a relationship between a fly's vision and its wind-sensing antennae.

The results were recently published in an early online edition of the Proceedings of the National Academy of Sciences.

Inspired by a previous experiment from the 1980s, Dickinson's former graduate student Sawyer Fuller (PhD '11) wanted to learn more about how fruit flies maintain their speed in flight. "In the old study, the researchers simulated natural wind for flies in a wind tunnel and found that flies maintain the same groundspeed—even in a steady wind," Fuller says.

Because the previous experiment had only examined the flies' in gentle steady winds, Fuller decided to test the limits of the insect's abilities by delivering powerful blasts of air from an air piston in a . The brief gusts—which reached about half a meter per second and moved through the tunnel at the speed of sound—were meant to probe how the fly copes if the wind is rapidly changing.

The flies' response to this dynamic stimulus was then tracked automatically by a set of five digital video cameras that recorded the fly's position from five different perspectives. A host of computers then combined information from the cameras and instantly determined the fly's trajectory and acceleration.

The video will load shortly
A high-speed video shows the fly from the left, top, and right during a brief wind gust from the front. The gust starts at 0:15 and ends at 0:21. The fly slows down and rises up. Study results showed that in gusts like this one, air drag causes part of the deceleration, but in addition, antennae sense airspeed changes and induce a response that causes the fly to decelerate even further. This added effect stabilizes the fly's visual groundspeed regulator in normal forward flight. Credit: Sawyer Fuller, Dickinson Lab/Caltech

To their surprise, the Caltech team found that the flies in their experiments, unlike those in the previous studies, accelerated when the wind was pushing them from behind and decelerated when flying into a headwind. In both cases the flies eventually recovered to maintain their original groundspeed, but the initial response was puzzling, Fuller says. "This response was basically the opposite of what the fly would need to do to maintain a consistent groundspeed in the wind," he says.

In the past, researchers assumed that flies—like humans and most other animals—used their vision to measure their speed in wind, accelerating and decelerating their flight based on the groundspeed their vision detected. But Fuller and his colleagues were also curious about the in-flight role of the fly's wind-sensing organs: the antennae.

Using the fly's initial response to strong wind gusts as a marker, the researchers tested the response of each sensory mode individually. To investigate the role of wind sensation on the fly's cruise control, they delivered strong gusts of wind to normal flies, as well as flies whose antennae had been removed. The flies without antenna still increased their speed in the same direction as the wind gust, but they only accelerated about half as much as the flies whose antennae were still intact. In addition, the flies without antennae were unable to maintain a constant speed, dramatically alternating between acceleration and deceleration. Together, these results suggested that the antennae were indeed providing wind information that was important for speed regulation.

In order to test the response of the eyes separately from that of the antennae, Fuller and his colleagues projected an animation on the walls of the fly-tracking arena that would trick the eyes into thinking there was no speed increase, even though the antenna could feel the increased windspeed. When the researchers delivered strong headwinds to flies in this environment, the flies decelerated and were unable to recover to their original speed.

"We know that vision is important for flying insects, and we know that flies have one of the fastest visual systems on the planet," Dickinson says, "But this response showed us that as fast as their vision is, if they're flying too fast or the wind is blowing them around too quickly, their visual system reaches its limit and the world starts getting blurry." That is when the antennae kick in, he says.

The results suggest that the are responsible for quickly sensing changes in windspeed—and therefore are responsible for the fly's initial deceleration in a headwind. The information received from the fly's eyes—which is processed much more slowly than information from the wind sensors on the antenna—is responsible for helping the fly regain its cruising speed.

"Sawyer's study showed that the fly can take another sensor—this little tiny antenna, which doesn't require nearly the amount of processing area within the brain as the eyes—and the fly is able to use that information to compensate for the fact that the information coming out of the eyes is a bit delayed," Dickinson says. "It's kind of a neat trick, using a cheap little sensor to compensate for the limitations of a big, heavy, expensive sensor."

Beyond learning more about the fly's wind-sensing capabilities, Fuller says that this information will also help engineers design small flying robots—creating a sort of man-made fly. "Tiny flying robots will take a lot of inspiration from flies. Like flies, they will probably have to rely heavily on vision to regulate groundspeed," he says.

"A challenge here is that vision typically takes a lot of computation to get right, just like in , but it's impossible to carry a powerful processor to do that quickly on a tiny robot. So they'll instead carry tiny cameras and do the visual processing on a tiny processor, but it will just take longer. Our results suggest that little flying vehicles would also do well to have fast wind sensors to compensate for this delay."

Explore further: Fruit flies, fighter jets use similar nimble tactics when under attack (w/ Video)

More information: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae, Sawyer Buckminster Fuller, DOI: 10.1073/pnas.1323529111

Related Stories

Bees' flight secrets revealed

September 11, 2013

Honeybees uses a combination of what they feel and see to streamline their bodies and gain maximum 'fuel efficiency' during flight, a world first study has found.

How flies set their cruising altitude

August 19, 2010

Insects in flight must somehow calculate and control their height above the ground, and researchers reporting online on August 19 in Current Biology, have new insight into how fruit flies do it. The answer is simpler than ...

Recommended for you

Study shows how giraffe assassin bugs outwit spider prey

October 26, 2016

(—A biologist at Macquarie University in Australia has discovered the secret behind the giraffe assassin's ability to catch and kill spiders in their webs. In his paper published on the open access site Royal Society ...

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.