Honey is a new approach to fighting antibiotic resistance

Mar 16, 2014

Honey, that delectable condiment for breads and fruits, could be one sweet solution to the serious, ever-growing problem of bacterial resistance to antibiotics, researchers said here today.

Medical professionals sometimes use successfully as a topical dressing, but it could play a larger role in fighting infections, the researchers predicted. Their study was part of the 247th National Meeting of the American Chemical Society (ACS).

The meeting, attended by thousands of scientists, features more than 10,000 reports on new advances in science and other topics. It is being held at the Dallas Convention Center and area hotels through Thursday.

"The unique property of honey lies in its ability to fight infection on multiple levels, making it more difficult for bacteria to develop resistance," said study leader Susan M. Meschwitz, Ph.D. That is, it uses a combination of weapons, including hydrogen peroxide, acidity, osmotic effect, high sugar concentration and polyphenols—all of which actively kill bacterial cells, she explained. The osmotic effect, which is the result of the high sugar concentration in honey, draws water from the , dehydrating and killing them.

In addition, several studies have shown that honey inhibits the formation of biofilms, or communities of slimy disease-causing bacteria, she said. "Honey may also disrupt , which weakens bacterial virulence, rendering the bacteria more susceptible to conventional antibiotics," Meschwitz said. Quorum sensing is the way bacteria communicate with one another, and may be involved in the formation of biofilms. In certain bacteria, this communication system also controls the release of toxins, which affects the bacteria's pathogenicity, or their ability to cause disease.

Meschwitz, who is with Salve Regina University in Newport, R.I., said another advantage of honey is that unlike conventional antibiotics, it doesn't target the essential growth processes of bacteria. The problem with this type of targeting, which is the basis of conventional antibiotics, is that it results in the building up resistance to the drugs.

Honey is effective because it is filled with healthful polyphenols, or antioxidants, she said. These include the phenolic acids, caffeic acid, p-coumaric acid and ellagic acid, as well as many flavonoids. "Several studies have demonstrated a correlation between the non-peroxide antimicrobial and antioxidant activities of honey and the presence of honey phenolics," she added. A large number of laboratory and limited clinical studies have confirmed the broad-spectrum antibacterial, antifungal and antiviral properties of honey, according to Meschwitz.

She said that her team also is finding that honey has antioxidant properties and is an effective antibacterial. "We have run standard antioxidant tests on honey to measure the level of antioxidant activity," she explained. "We have separated and identified the various antioxidant polyphenol compounds. In our antibacterial studies, we have been testing honey's activity against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa, among others."

Explore further: Scottish heather honey is best for beating bacteria

More information: Bioactive constituents in honey: Antimicrobial and antibiofilm effects

Abstract
Honey is the oldest natural sweetener and has been known for its medicinal uses since ancient times. A large number of in vitro and limited clinical studies have confirmed the broad-spectrum antimicrobial (antibacterial, antifungal, and antiviral) properties of honey, which are mainly attributed to a combination of hydrogen peroxide, acidity, osmotic effect, high sugar concentration, and antioxidants. However, the precise mode of antibacterial action is only just beginning to be understood. Several studies have demonstrated a correlation between the non-peroxide antimicrobial and antioxidant activities of honey and the presence of honey phenolics. Although the specific polyphenols found in honey vary with nectar source and region, the most common phenolics found in honey include the phenolic acids caffeic acid, p-coumaric acid, and ellagic acid and the flavonoids quercetin, apigenin, galangin, pinocembrin, kaempferol, luteolin, and chrysin. The antimicrobial properties of honey might only represent one facet of its anti-infective potential and may involve other mechanisms. Recently, the effect of honey on the inhibition and prevention of bacterial biofilm formation and the interruption of bacterial cell-cell communication systems has been investigated but the constituents responsible for this effect have not been determined. In order to understand the unusual ability that honey has to fight infections, we have investigated additional constituents of honey that may provide alternative modes of antibacterial action.

add to favorites email to friend print save as pdf

Related Stories

Honey can reverse antibiotic resistance

Apr 13, 2011

Manuka honey could be an efficient way to clear chronically infected wounds and could even help reverse bacterial resistance to antibiotics, according to research presented at the Society for General Microbiology's Spring ...

How manuka honey helps fight infection

Sep 07, 2009

Manuka honey may kill bacteria by destroying key bacterial proteins. Dr Rowena Jenkins and colleagues from the University of Wales Institute - Cardiff investigated the mechanisms of manuka honey action and found that its ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Semmster
not rated yet Mar 17, 2014
...and meanwhile, back at the Bat Cave, we're busy poisoning the bees...