Researchers report on discovery to make solar power less expensive and more efficient

Mar 03, 2014
Researchers report on discovery to make solar power less expensive and more efficient

(Phys.org) —University of Cincinnati researchers are reporting early results on a way to make solar-powered panels in lights, calculators and roofs lighter, less expensive, more flexible (therefore less breakable) and more efficient.

Fei Yu, a University of Cincinnati doctoral student in materials engineering, will present new findings on boosting the of on March 3, at the American Physical Society Meeting in Denver.

Yu is experimenting with adding a small fraction of nanoflakes to polymer-blend bulk-heterojunction (BHJ) solar cells to improve performance and lower costs of solar energy.

"There has been a lot of study on how to make more efficient, so they can take the place of in the future," says Yu. "They can be made into thinner, lighter and more flexible panels. However, they're currently not as efficient as silicon solar cells, so we're examining how to increase that efficiency."

Imagine accidentally kicking over a silicon solar-powered garden light, only to see the solar-powered cell crack. Polymers are carbon-based materials that are more flexible than the traditional, fragile silicon solar cells. Charge transport, though, has been a limiting factor for polymer solar cell performance.

Graphene, a natural form of carbon, is a relatively newly discovered material that's less than a nanometer thin. "Because graphene is pure carbon, its charge conductivity is very high," explains Yu. "We want to maximize the energy being absorbed by the solar cell, so we are increasing the ratio of the donor to acceptor and we're using a very low fraction of graphene to achieve that."

Yu's research found that efficiency increased threefold by adding graphene, because the material was helping to rapidly transport charges to achieve higher photocurrent. "The increased performance, although well below the highest efficiency achieved in organic photovoltaic (OPV) devices, is nevertheless significant in indicating that pristine graphene can be used as a charge transporter," says Yu.

Yu's advisor, Vikram K. Kuppa, an assistant professor in the School of Energy, Environmental, Biological and Medical Engineering (SEEBME) for the UC College of Engineering and Applied Sciences (CEAS), was a contributor to the research. Kuppa is leading the research of a variety of polymer-blend involving the use of graphene.

Future research will focus on device physics, film morphology and how to control and optimize these randomly distributed graphene nanoflakes by a variety of methods to achieve better performance.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

add to favorites email to friend print save as pdf

Related Stories

3D graphene: Solar cells' new platinum?

Aug 20, 2013

One of the most promising types of solar cells has a few drawbacks. A scientist at Michigan Technological University may have overcome one of them.

Graphene boosts efficiency of next-gen solar cells

Apr 24, 2012

(Phys.org) -- The coolest new nanomaterial of the 21st century could boost the efficiency of the next generation of solar panels, a team of Michigan Technological University materials scientists has discovered.

Recommended for you

Researchers use oxides to flip graphene conductivity

22 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.