Cilia of Vorticella for active microfluidic mixing

Mar 03, 2014
Cilia of Vorticella for active microfluidic mixing
Figure1: Micrograph of Vorticella in microchannel.

Active elements are fundamental components of many microsystems. Traditional elements with nonliving, artificial actuators require an external power source for operation, with magnetic and electric fields necessary to drive the active elements and increase the size of the devices.

The active element size is an obstacle that hinders further miniaturization of and which therefore prevents compact system fabrication. Sophisticated biological motors from living microorganisms are applicable in microsystems functionalization while reducing the overall size of devices.

Moeto Nagai and colleagues at Toyohashi University of Technology have shown directional induced by coordinated ciliary motion in living Vorticella microorganisms for microfluidic applications.

Fluid transport was applied to enhance the of solutions containing microparticles in a microchannel that had been functionalized with Vorticella. Two solutions were injected and a stable laminar continuous flow was generated to measure the mixing performance. Changes in intensity profiles and mixing indexes were measured along the flow direction. A method to pattern Vorticella in micropockets was also developed to extend the possibilities for device design.

Cilia of Vorticella for active microfluidic mixing
Figure 2: Schematic of micromixing by Vorticella.

Particle transport by several cells of Vorticella enhanced the mixing of the solutions. Decreasing the flow speed enhanced the mixing performance. A three-layer device equipped with a pneumatic valve enables confinement of Vorticella with removal of the suction pressure. Most trapped cells adhered in the pockets for 6 h. The pocket geometry controlled the Vorticella posture.

Application of the coordinated ciliate motion is expected for portable bioanalytical systems capable of analyzing less-diffusive materials.

Explore further: Chemists characterize 3-D macroporous hydrogels

More information: "Mixing of solutions by coordinated ciliary motion in Vorticella convallaria and patterning method for microfluidic applications." Moeto Nagai, Yo Hayasaka, Kei Kato, Takahiro Kawashima, and Takayuki Shibata. Sensors and Actuators B: Chemical 188, 1255–1262 (2013). (DOI): 10.1016/j.snb.2013.08.040

Related Stories

Microfluidics: Creating chaos

May 10, 2012

A quiet revolution is taking place in the fields of biology and chemistry. Microfluidic devices, which allow fluid manipulation in micro-scale channels, are slowly but surely finding their place on the lab ...

First-time measurements will advance turbulence models

Feb 12, 2014

(Phys.org) —In research featured on the cover of Journal of Fluid Mechanics, an interdisciplinary Los Alamos team took a series of first-time measurements of turbulent mixing, providing new insights for tu ...

Cat's eyes: Designing the perfect mixer

Oct 29, 2013

As any amateur baker knows, proper mixing is crucial to a perfect pastry. Mix too little and ingredients will not be evenly distributed; beat instead of fold, and a soufflé will fall flat. Mixing strategies ...

Lab-on-a-chip technology gets a flexible upgrade

Jul 12, 2013

Microfluidic devices move liquids through tiny, hair-sized pathways carved into glass slides and have distinct advantages over traditional laboratories when it comes to medical diagnostics. At these reduced ...

Mixing it up with E. coli

Jan 15, 2007

Poetry in motion may seem like an odd way to describe swimming bacteria, but that's what researchers at Drexel University got when they enlisted Escherichia coli (E. coli) in an effort to tackle a major problem in developing ...

Recommended for you

Chemists characterize 3-D macroporous hydrogels

2 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

8 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

10 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

11 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

11 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.