Cilia of Vorticella for active microfluidic mixing

Cilia of Vorticella for active microfluidic mixing
Figure1: Micrograph of Vorticella in microchannel.

Active elements are fundamental components of many microsystems. Traditional elements with nonliving, artificial actuators require an external power source for operation, with magnetic and electric fields necessary to drive the active elements and increase the size of the devices.

The active element size is an obstacle that hinders further miniaturization of and which therefore prevents compact system fabrication. Sophisticated biological motors from living microorganisms are applicable in microsystems functionalization while reducing the overall size of devices.

Moeto Nagai and colleagues at Toyohashi University of Technology have shown directional induced by coordinated ciliary motion in living Vorticella microorganisms for microfluidic applications.

Fluid transport was applied to enhance the of solutions containing microparticles in a microchannel that had been functionalized with Vorticella. Two solutions were injected and a stable laminar continuous flow was generated to measure the mixing performance. Changes in intensity profiles and mixing indexes were measured along the flow direction. A method to pattern Vorticella in micropockets was also developed to extend the possibilities for device design.

Cilia of Vorticella for active microfluidic mixing
Figure 2: Schematic of micromixing by Vorticella.

Particle transport by several cells of Vorticella enhanced the mixing of the solutions. Decreasing the flow speed enhanced the mixing performance. A three-layer device equipped with a pneumatic valve enables confinement of Vorticella with removal of the suction pressure. Most trapped cells adhered in the pockets for 6 h. The pocket geometry controlled the Vorticella posture.

Application of the coordinated ciliate motion is expected for portable bioanalytical systems capable of analyzing less-diffusive materials.

More information: "Mixing of solutions by coordinated ciliary motion in Vorticella convallaria and patterning method for microfluidic applications." Moeto Nagai, Yo Hayasaka, Kei Kato, Takahiro Kawashima, and Takayuki Shibata. Sensors and Actuators B: Chemical 188, 1255–1262 (2013). (DOI): 10.1016/j.snb.2013.08.040

Citation: Cilia of Vorticella for active microfluidic mixing (2014, March 3) retrieved 19 May 2024 from https://phys.org/news/2014-03-cilia-vorticella-microfluidic.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Microfluidics: Creating chaos

0 shares

Feedback to editors