Topological insulators could exist in six new types not seen before, theorists predict

Feb 06, 2014 by David Chandler
"Black Circle" by Kazimir Malevich

Topological insulators—materials whose surfaces can freely conduct electrons even though their interiors are electrical insulators—have been of great interest to physicists in recent years because of unusual properties that may provide insights into quantum physics. But most analysis of such materials has had to rely on highly simplified models.

Now, a team of researchers at MIT has performed a more detailed analysis that hints at the existence of six new kinds of topological insulators. The work also predicts the materials' physical properties in sufficient detail that it should be possible to identify them unambiguously if they are produced in the lab, the scientists say.

The new findings are reported this week in the journal Science by MIT professor of physics Senthil Todadri, graduate student Chong Wang, and Andrew Potter, a former MIT graduate student who is now a postdoc at the University of California at Berkeley.

"In contrast to conventional insulators, the surface of the topological insulators harbors exotic physics that are interesting both for fundamental physics, and possibly for applications," Senthil says. But attempts to study the properties of these materials have "relied on a highly simplified model in which the electrons inside the solid are treated as though they did not interact with each other." New analytical tools applied by the MIT team now reveal "that there are six, and only six, new kinds of topological insulators that require strong electron-electron interactions."

"The surface of a three-dimensional material is two-dimensional," Senthil says—which explains why the electrical behavior of the surface of a is so different from that of the interior. But, he adds, "The kind of two-dimensional physics that emerges [on these surfaces] can never be in a two-dimensional material. There has to be something inside, otherwise this will never occur. That's what's exciting about these materials," which reveal processes that don't show up in other ways.

In fact, Senthil says, this new work based on analysis of such surface phenomena shows that some previous predictions of phenomena in two-dimensional "cannot be right."

Since this is a new finding, he says, it is too soon to say what applications these new topological insulators might have. But the analysis provides details on predicted properties that should allow experimentalists to begin to understand the behavior of these exotic states of matter.

"If they exist, we know how to detect them," Senthil says of these new phases. "And we know that they can exist." What this research doesn't yet show, however, is what these new topological insulators' composition might be, or how to go about creating them.

The next step, he says, is to try to predict "what compositions might lead to" these newly predicted phases of topological insulators. "It's an open question now that we need to attack."

Explore further: Spintronics: Deciphering a material for future electronics

More information: "Classification of Interacting Electronic Topological Insulators in Three Dimensions" Science, 2014.

Related Stories

Novel topological crystalline insulator shows mass appeal

Aug 29, 2013

Disrupting the symmetrical structure of a solid-state topological crystalline insulator creates mass in previously mass-less electrons and imparts an unexpected level of control in this nascent class of materials, an international ...

Researchers forward quest for quantum computing

May 23, 2013

Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

Recommended for you

High-intensity sound waves may aid regenerative medicine

11 hours ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

15 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.