Helping robots learn to walk

Feb 28, 2014
Figure 1: The gait of the walking robot is greatly improved by a computer model that mimics the tacit learning of animals. Credit: Shingo Shimoda, RIKEN BSI–TOYOTA Collaboration Center

Fully autonomous robots could transform the way we live, but so far such machines remain beyond the reach of our most advanced technologies. Existing robots are generally limited to performing simple, well-structured tasks in controlled environments. To overcome unpredictable natural obstacles, robots must be able to learn from their environment and adapt their behavior in the same way as humans.

Shingo Shimoda and colleagues from the RIKEN BSI–TOYOTA Collaboration Center have now greatly improved the walking skill of a two-legged robot by programming the robot to adapt its posture in response to cues from the environment1.

Having previously worked at the Japan Aerospace Exploration Agency (JAXA), Shimoda has long been interested in how robots can obtain the skills needed to explore on Earth and other planets. "I wondered why small animals like squirrels can move around and find food in a natural environment but robots cannot, even with great computing power," he says. "The control principles of biological systems offer important clues that we can use to implement the same adaptability in robots."

For a robot to be adaptable, it must have regulatory systems of integrated components that work together in response to the environment, just like proteins or neurons in the human body. Shimoda's team developed a 'tacit learning' scheme that enables the regulatory system in a robot to tune primitive, reflexive actions into more sophisticated, useful behavior. A computer model simulates the natural process based on interacting code structures called variable threshold neurons, achieving control of the 36 movable joints in the team's walking robot (Fig. 1).

For every movement of the robot, the researchers specified certain joints that were strictly controlled to obtain an objective, for example the swinging hip of the leg that was stepping forward. The computer model then adjusted other joints, such as those of the supporting leg, to an optimum configuration that kept the robot standing and minimized its energy consumption.

In their first trial on a smooth laboratory floor, the robot fell down, but after around 10 minutes the motion was sufficiently tuned to keep the robot walking at over 7 centimeters per second. The was also able to adapt its walking gait to walk on natural turf and up slopes.

Shimoda believes that this same tacit-learning scheme could be applied to help robots interact with humans. "One important application would be prosthetic arms that can automatically move in response to the motions of the remaining joints," he says.

Explore further: The potential for robots to perform human jobs

More information: Shimoda, S., Yoshihara, Y. & Kimura, H. Adaptability of tacit learning in bipedal locomotion. IEEE Transactions on Autonomous Mental Development 5, 152–161 (2013). DOI: 10.1109/TAMD.2013.2248007

Related Stories

Robots learn from each other on 'Wiki for robots'

Jan 13, 2014

Now it's not just people – robots are also connected by internet thanks to RoboEarth. Next week, after four years of research, scientists at Eindhoven University of Technology (TU/e), Philips and four other ...

DALER project shows a walking flying robot (w/ Video)

Aug 04, 2013

(Phys.org) —At the Laboratory of Intelligent Systems we are developing a novel flying platform which has the ability to move on the ground by using its wings only. Using the wings as whegs to move on rough ...

Humanoid robot "Russell" engages children with autism

Nov 19, 2013

With support from the National Science Foundation (NSF), mechanical and computer engineer Nilanjan Sarkar and psychologist Zachary Warren of Vanderbilt University have developed a learning environment for ...

Recommended for you

The potential for robots to perform human jobs

Apr 20, 2015

Here's a game to play over dinner. One person names a profession that they believe can't be taken over by a machine, and another person has to make a case why it's not so future-proof. We played this game ...

Developing a robotic therapist for children

Apr 20, 2015

In collaboration with other national institutions, researchers at Universidad Carlos III de Madrid (UC3M) are designing a new therapeutic tool for motor rehabilitation for children. In this project, an interactive ...

Automating logistics for the factory of the future

Apr 20, 2015

Mass production and packaging in factories is already highly automated these days, but the same cannot be said for logistics. Movements of raw materials and finished products still depend heavily on manual ...

Japan robot receptionist welcomes shoppers

Apr 20, 2015

She can smile, she can sing and this robot receptionist who started work in Tokyo on Monday never gets bored of welcoming customers to her upmarket shop.

'Robobarista' can figure out your new coffee machine

Apr 15, 2015

In the near future we may have household robots to handle cooking, cleaning and other menial tasks. They will be teachable: Show the robot how to operate your coffee machine, and it will take over from there.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.