Most precise measurement of electron mass made

electron
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left). Credit: RJHall/Wikipedia

Scientists in Germany said Wednesday they had made the most precise measurement yet of the mass of the electron, one of the building blocks of matter.

The feat should provide a useful tool for scientists testing the "Standard Model" of physics—the most widely-accepted theory of the particles and forces that comprise the Universe, they said.

Electrons are particles with a negative that orbit the nucleus of an atom.

They were discovered in 1897 by Britain's Joseph John ("J.J.") Thomson, who dubbed them "corpuscles"—a name later changed to "electron" because of its connection with electrical charge.

A team led by Sven Sturm of the Max Planck Institute for Nuclear Physics in Heidelberg "weighed" electrons using a device called a Penning trap, which stores charged particles in a combination of magnetic and electrical fields.

They measured a single electron that was bound to a carbon nucleus whose mass was already known.

The electron has 0.000548579909067 of an atomic mass unit, the measurement unit for , according to the calculation, which factors in variables for statistical and experimental uncertainties.

The estimate is a 13-fold improvement in accuracy on previous attempts at determining the electron's mass.

"This result lays the foundation for future fundamental physics experiments and precision tests of the Standard Model," according to the study published in the journal Nature.

More information: Study paper: dx.doi.org/10.1038/nature13026

Journal information: Nature

© 2014 AFP

Citation: Most precise measurement of electron mass made (2014, February 19) retrieved 27 April 2024 from https://phys.org/news/2014-02-precise-electron-mass.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

From ancient Greece to Nobel prize: a Higgs timeline

0 shares

Feedback to editors