Researchers develop non-iridescent, structural, full-spectrum pigments for reflective displays

Feb 20, 2014
Researchers develop non-iridescent, structural, full-spectrum pigments for reflective displays

Free of dyes but colorful: A team of American and Korean researchers is the first to develop non-iridescent, structural, full-spectrum pigments, whose color is independent of the viewing angle, for use in reflective displays. The researchers reveal the secret of their success in the journal Angewandte Chemie: their "photonic pigments" are microcapsules filled with densely packed core–shell colloidal particles.

Conventional coloring agents have a variety of disadvantages: organic dyes tend to fade; inorganic pigments are often based on toxic heavy metals such as chromium. The we see results from the absorption of a portion of the visible light spectrum. The reflected portions add to the color observed. Another way to produce color that works without absorption is widely found in nature – in butterflies, for example.

Arrays of nanoscopic can appear to be colored as a result of wavelength-dependent optical interference, refraction, and light . The color depends on the size of the particles. However, such structural pigments iridesce, meaning that the observed color varies in accordance with the angle of illumination or the viewing angle. In displays and many other applications, this would naturally be very annoying. The high degree of order in the particles of the crystal lattice contributes to this problem. It is thus desirable to have the particles in a noncrystalline, amorphous arrangement, which is very difficult to achieve. In addition, amorphous structural pigments have thus far had very unsatisfactory color saturation caused by so called multiple scattering. A second type of undesired scattering, so-called incoherent scattering, contributes to a blueish background color that makes it difficult to produce a full spectrum of colors, particularly red.

A team from Harvard University (USA), the Korea Advanced Institute of Science and Technology, and the Korea Electronics Technology Institute has now solved these problems. Their success is due to microcapsules packed with nanoscopic polymer spheres whose core and shell are made of two different polymers. Led by Vinothan N. Manoharan, the scientists designed the shells to have the same refractive index as the surrounding aqueous medium. The light is thus only scattered by the cores, whose size and distance from each other determine the scattering properties. In a dense packing arrangement, the distance between cores can be determined by the thickness of the shells. If the cores are very small and the shells relatively thick, the undesired types of scattering can be minimized while the desired coherent scattering that is responsible for the structural color dominates.

By using a microfluidic technique, tiny droplets of an aqueous suspension of the core–shell particles are coated with a thin film of oil. They are then shrunken through osmosis until the particles adopt a densely packed arrangement. The soft polymer shells of the particles prevent crystallization. In the last step, the oil film is cured with UV light to make delicate, transparent, capsules.

The color of the novel structural pigments can be varied over the entire spectrum by changing the distances of the particle cores from each other by means of the thickness of the shells. The goal is to use these new nanoparticles in reflective displays.

Explore further: Physicists patent method to change skin-color perception

More information: "Full-Spectrum Photonic Pigments with Non-iridescent Structural Colors through Colloidal Assembly." Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201309306

add to favorites email to friend print save as pdf

Related Stories

Physicists patent method to change skin-color perception

Nov 05, 2013

How someone perceives color is determined by how the item they are looking at scatters and emits light. In August, three City College of New York physicists affiliated with the Institute for Ultrafast Spectroscopy ...

Micro-onions and magnetic ink

Aug 08, 2011

(PhysOrg.com) -- Microfluidic systems for the easy production of multiphasic emulsion drops and multishelled polymer capsules. Under a microscope they look like miniature onions, in fact, they are new microcapsules introduced ...

Recommended for you

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

peter_trypsteen
not rated yet Mar 24, 2014
If this could be developed into an new e-ink display that has color, that would be amazing!!!