Fossilized human feces from 14th century contain antibiotic resistance genes

Feb 27, 2014

A team of French investigators has discovered viruses containing genes for antibiotic resistance in a fossilized fecal sample from 14th century Belgium, long before antibiotics were used in medicine. They publish their findings ahead of print in the journal Applied and Environmental Microbiology.

"This is the first paper to analyze an ancient DNA viral metagenome," says Rebecca Vega Thurber of Oregon State University, Corvallis, who was not involved in the research.

The viruses in the fecal sample are phages, which are viruses that infect , rather than infecting eukaryotic organisms such as animals, plants, and fungi. Most of the viral sequences the researchers found in the ancient coprolite (fossil fecal sample) were related to viruses currently known to infect bacteria commonly found in stools (and hence, in the human gastrointestinal tract), including both bacteria that live harmlessly, and even helpfully in the , and human pathogens, says corresponding author Christelle Desnues of Aix Marseille Université.

The communities of phage within the coprolite were different, taxonomically, from communities seen within modern human fecal samples, but the functions they carry out appear to be conserved, says Desnues. That reinforces the hypothesis that the viral community plays a fundamental role within the , and one which remains unchanged after centuries, even while the human diet and other human conditions have been changing.

Over the last five years, considerable evidence has emerged that bacteria inhabiting the gut play an important role in maintaining human health, for example, as part of the human metabolic system, says Desnues. Her own research suggests that the bacteriophage infecting the gut bacteria may help maintain these bacteria. Among the genes found in the phage are and genes for resistance to toxic compounds. Both toxins and antibiotics are common in nature, and Desnues suggests that the resistance genes may simply be protecting the from them.

"Our evidence demonstrates that bacteriophages represent an ancient reservoir of and that this dates at least as far back as the Middle Ages," says Desnues.

"We were interested in viruses because these are 100 times more abundant than human cells in our bodies, but their diversity is still largely unexplored," says Desnues. "In the present study, we thus focused on the viral fraction of the coprolite by using, for the first time, a combination of electron microscopy, high-throughput sequencing and suicide PCR approaches."

Desnues and her collaborators are currently conducting further studies on the fungi and parasites in the coprolites, which she says will be of interest not only to microbiologists, but to historians, anthropologists, and evolutionists.

The genesis of the research was an urban renewal project in the city of Namur, Belgium, in which latrines dating back to the 1300s were discovered beneath a square.

Explore further: Sugar mimics guide stem cells toward neural fate

More information: Applied and Environmental Microbiology. DOI: 10.1128/AEM.03242-13

add to favorites email to friend print save as pdf

Related Stories

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Viruses in gut confer antibiotic resistance to bacteria

Jun 10, 2013

Bacteria in the gut that are under attack by antibiotics have allies no one had anticipated, a team of Wyss Institute scientists has found. Gut viruses that usually commandeer the bacteria, it turns out, ...

Research team recognizes predator-producing bacteria

Dec 11, 2012

Unique viruses called bacteriophages may play an important role in competition among bacterial strains, influencing the overall ecosystem of the human intestine, scientists at The University of Texas at Arlington and UT Southwestern ...

Recommended for you

Sugar mimics guide stem cells toward neural fate

1 hour ago

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

Researchers uncover secrets of internal cell fine-tuning

Jul 29, 2014

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0