Researchers find reactions occur faster in micro-droplets

Jan 20, 2014 by Bob Yirka report
(a) Schematic of the reaction A+A⇔k1k-1AA in the aqueous droplet; grey circles represent nonfluorescent reactant A and green circles represent fluorescent product AA. Product AA generated at the surface desorbs into the droplet’s interior (as marked by arrows) resulting in enhanced synthesis. (b) The apparent forward reaction rate constant k1 and the apparent equilibrium constant Keq=k1/k-1 are inversely proportional to the droplet radius R. (c) Fluorescence imaging of droplets with radii 34 micrometers (upper image) and 8 micrometers (lower image) illustrates an increase in concentration of fluorescent product AA in the smaller droplets with the color change of these droplets with respect to the larger ones. Credit: Physics Viewpoint / Olga Kuksenok/University of Pittsburgh;(panel (c) adapted from Fallah-Araghi et al.)

( —A team made up of researchers from France, Germany, the U.K. and the U.S. has found that chemical reactions that result in the formation of new molecules tend to run much faster when confined to a very small space. In their paper published in Physical Review Letters, the team describes experiments they carried out that showed that certain chemical reactions that occurred in micro-droplets ran much faster than similar reactions occurring in a non-constricting environment.

The research by the team is part of an effort to try to learn how it was that life here on Earth came to be—likely as part of some unknown chemical reaction. To that end, they wondered if perhaps such reactions might have been more likely if they occurred in a more constricted space. Others have suggested that life may have gotten its start in micro-droplets of water after they evaporated from the ocean or other sources. To find out if such an idea might be plausible, the researchers tried to mimic conditions that existed on our prebiotic planet.

They chose two —an aldehyde and an amine —taken alone they are not florescent—when they meet, though, a reaction occurs causing the formation of a molecule that is: a fluorescent imine. They conducted several experiments whereby the two molecules were allowed to meet and react in different sized liquid environments—from standing pools of water to micro-droplets. To measure how fast the reaction took place, the team measured how quickly the mix turned fluorescent. They report that the reactions occurring in the micro-droplets ran as fast as forty five times as fast as the reactions occurring in standing water.

To explain what they had observed, the team created a mathematical model that allows for manipulating volume size versus of the environment. The model suggests that reactants in a small liquid volume where there is a relatively large surface area, provide an opportunity for the creation of larger molecules. That, the researchers suggest, might help explain how larger molecules (such as those that eventually led to something that was alive) could form from smaller ones during the time when life was beginning to emerge. Notable is that their experiments show that evaporation may not have been part of that process.

The team plans to next study multi-step reaction times in confined spaces.

Explore further: New research predicts when, how materials will act

More information: Enhanced Chemical Synthesis at Soft Interfaces: A Universal Reaction-Adsorption Mechanism in Microcompartments, Phys. Rev. Lett. 112, 028301 (2014) DOI: 10.1103/PhysRevLett.112.028301 (Free PDF)

A bimolecular synthetic reaction (imine synthesis) was performed compartmentalized in micrometer-diameter emulsion droplets. The apparent equilibrium constant (Keq) and apparent forward rate constant (k1) were both inversely proportional to the droplet radius. The results are explained by a noncatalytic reaction-adsorption model in which reactants adsorb to the droplet interface with relatively low binding energies of a few kBT, react and diffuse back to the bulk. Reaction thermodynamics is therefore modified by compartmentalization at the mesoscale—without confinement on the molecular scale—leading to a universal mechanism for improving unfavorable reactions.

Related Stories

Stabilisation of microdroplets using ink jet process

Jul 31, 2013

Progress means that many things that are used in everyday life are becoming more manageable, practical and generally smaller. This also applies to biological and chemical experiments. To save material and ...

The quantum secret to alcohol reactions in space

Jun 30, 2013

Chemists have discovered that an 'impossible' reaction at cold temperatures actually occurs with vigour, which could change our understanding of how alcohols are formed and destroyed in space.

First plastic cell with working organelle

Jan 15, 2014

For the first time, chemists have successfully produced an artificial cell containing organelles capable of carrying out the various steps of a chemical reaction. This was done at the Institute for Molecules ...

Researchers create world's smallest reaction chamber

Dec 06, 2012

The world's smallest reaction chamber, with a mixing volume measured in femtolitres (million billionths of a litre), can be used to study the kind of speedy, nanoscale biochemical reactions that take place ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.