Physicists quantify temperature changes in metal nanowires

Jan 17, 2014

(Phys.org) —Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, a University of Arkansas physicist and his collaborators have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Plasmons can be thought of as waves of electrons in a metal surface, said Joseph B. Herzog, visiting assistant professor of physics, who co-authored a paper detailing the findings that was published Jan. 1 by the journal Nano Letters, a publication of the American Chemical Society.

The paper, titled "Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires, was co-written by Rice University researchers Mark W. Knight and Douglas Natelson.

In the experiments, Herzog, who joined the U of A faculty last summer, fabricated plasmonic nanostructures with and precisely focused a laser on to a gold nanowire with a scanning optical setup.

"This work measures the change in electrical resistance of a single gold nanowire while it is illuminated with ," Herzog said. "The change in resistance is related to the of the nanowire. Being able to measure temperature changes at small nanoscale volumes can be difficult, and determining what portion of this change is due to plasmons can be even more challenging.

"By varying the polarization of the light incident on the nanostructures, the plasmonic contribution of the optical heating has been determined and confirmed with computational modeling," he said.

Herzog's publication is in a rapidly growing, specialized area called thermoplasmonics, a sub-field of that studies the effects of heat due to plasmons and has been used in applications ranging from cancer treatment to solar energy harvesting.

Herzog combines his research of plasmons with his expertise in nano-optics, which is the nanoscale study of light.

"It's a growing field," he said. "Nano-optics and plasmonics allow you to focus light into smaller regions that are below the diffraction limit of light. A plasmonic nanostructure is like an optical antenna. The plasmon-light interaction makes plasmonics fascinating."

Herzog is setting up his research lab at the University of Arkansas, which will focus on nano-optics and plasmonics. In addition to his appointment in physics, Herzog collaborates with the university's microelectronics-photonics program is a faculty member and the University of Arkansas' Institute for Nanoscience and Engineering.

Explore further: Controlling light with light

More information: "Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires." Joseph B. Herzog, Mark W. Knight, and Douglas Natelson. Nano Lett. (2014). DOI: 10.1021/nl403510u

Related Stories

A breakthrough in plasmonics

Jun 17, 2013

EPFL scientists have discovered how optical signal transmission can be controlled, paving the way for the integration of plasmonics with conventional electronic circuits.

Controlling light with light

Jan 10, 2014

A new approach to control light with light without the need for optical nonlinearity: Nanoparticle auto-oscillations in a subwavelength plasmonic V-groove waveguide induced by a control light can be used for the periodic ...

Nanoplasmonics: Towards efficient light harvesting

Jan 07, 2014

The control of light is vital to many applications, including imaging, communications, sensing, cancer treatment, and even welding processes for automobile parts. Transformation optics is an emerging field that has revolutionized ...

Recommended for you

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.