Developing methods for building precise nanostructures

Jan 13, 2014

Researchers at Case Western Reserve University have received a $540,000 federal grant to devise methods for building minute structures tailored to precisely deliver medicines to tumors or carry dyes that help imaging technologies detect disease, create more efficient nanowires and nanoelectonics, and more.

Building precisely defined structures on the nanoscale has proven a challenge for chemists. To provide control and precision, the researchers propose to build complex nanostructures on scaffolds made of plant viruses, tiny organisms that infect plant cells but are benign outside the plant.

Jon Pokorski, assistant professor of macromolecular science and engineering, and Nicole Steinmetz, assistant professor of , will use the three-year grant from the National Science Foundation's Macromolecular, Supramolecular and Nanochemistry Program to test three methods of synthesizing rod-shaped nanostructures.

Typically, scientists build nanopolymers from small that self-assemble and are used to make films, supercrystals and devices. But there are always imperfections in the assembly.

"By using a template—the virus—we can produce an evenly dispersed polymer coating that yields more consistent and efficient properties," Pokorski said. "And this is very modular; it can be applied to lots of uses."

By controlling the size and surface features, they hope to reduce or eliminate the toxic side effects that can be caused by those two properties during drug delivery, he said.

Steinmetz, an appointee of the Case Western Reserve School of Medicine, will build the templates using . Instead of making spheres, the goal is to make materials that are considerably longer than they are wide, called "high-aspect" materials.

"The physical property makes them more useful for nanowires and electronics and applications in the body," she said.

The tobacco virus particles are about 300 nanometers by 18 nanometers, but Steinmetz will control sizes using genetic engineering, "which gives us more control than we could have using purely chemical production methods," she said.

Pokorski will add polymers. The rod shape allows a polymer with one function—such as carrying medicine—to be tied to one end, and another with a different function—such as carrying an imaging dye—to the other.

"Or," he explained, "we can grow one polymer on the exterior and a different polymer on the interior because the plant virus is a hollow tube."

In addition to using nanoparticles as vehicles to carry medicines to specific targets, they could be used as electrical connectors, replacing carbon nanotubes used to link nanoelectronics.

Explore further: Gadget genius

add to favorites email to friend print save as pdf

Related Stories

Gadget genius

Jul 26, 2013

University of Akron researchers have developed new materials that function on a nanoscale, which could lead to the creation of lighter laptops, slimmer televisions and crisper smartphone visual displays.

Heterogeneous nanoblocks give polymers an edge

Aug 05, 2013

Building structures by mixing lego bricks of two different sizes is child's play. However, studying polymers endowed with an alternating nanostructure made of heterogeneous blocks is anything but straightforward.

Recommended for you

Thinnest feasible nano-membrane produced

11 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

14 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...