Discovery of mechanism by which sex hormone regulates aggressive behavior

Jan 29, 2014

A group led by Professor Kazuyoshi Tsutsui and Research Associate Takayoshi Ubuka, of the Waseda University Center for Advanced Biomedical Sciences, has discovered a hormonal mechanism for controlling aggressiveness in male birds.

Male has long been thought to depend on androgen, a produced in the testes. However, previous research suggested that a synthetic enzyme (aromatase) can convert androgen into female sex hormone () in the brain and regulate male aggressiveness.

In 2000, Professor Tsutsui et al. discovered a new hypothalamic hormone (gonadotropin-inhibitory hormone, GnIH; a type of neuropeptide) in the brain which inhibits reproduction. Later, Ubuka et al. demonstrated that GnIH can inhibit aggressive behavior (PLoS ONE 2012).

The current research, in order to understand the mechanism of GnIH inhibiting aggressiveness, involved a series of experiments using quail, an aggressive species of bird, as a model. When GnIH was injected into a male's brain, activity of aromatase was increased, and the quantity of estrogen in the brain was greatly increased.

Next, when highly concentrated estrogen was injected, aggressiveness of the male quail was greatly decreased. Further, it became clear that neurons which synthesize estrogen have the receptor for GnIH.

This research shows that GnIH acts on the neurons which synthesize estrogen, to greatly increase production of estrogen and greatly decrease aggressiveness in male quail. Hence it is thought that when GnIH causes an extreme increase in estrogen synthesis, this creates an excess of estrogen in the and curbs male aggressiveness.

This research has explained a mechanism of regulating aggressiveness. Abnormally high aggressiveness is a major cause of instability in human society. This research provides a model for explaining behavior of quail, an aggressive bird species, but future work, by looking for a similar mechanism in humans, may lead to a method for regulating spikes in aggressiveness in humans, and thereby contribute to peace and order in society.

Explore further: High cholesterol fuels the growth and spread of breast cancer

More information: "Hypothalamic inhibition of socio-sexual behaviour by increasing neuroestrogen synthesis." Takayoshi Ubuka, Shogo Haraguchi, Yasuko Tobari, Misato Narihiro, Kei Ishikawa, et al. Nature Communications 5, Article number: 3061 DOI: 10.1038/ncomms4061. Received 20 September 2013 Accepted 03 December 2013 Published 16 January 2014

add to favorites email to friend print save as pdf

Related Stories

Estrogen promotes blood-forming stem cell function

Jan 22, 2014

Scientists have known for years that stem cells in male and female sexual organs are regulated differently by their respective hormones. In a surprising discovery, researchers at the Children's Medical Center ...

Recommended for you

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

The unknown crocodiles

Nov 21, 2014

Just a few years ago, crocodilians – crocodiles, alligators and their less-known relatives – were mostly thought of as slow, lazy, and outright stupid animals. You may have thought something like that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.