New hope for stem cells, regenerative medicine emerges from the lab

December 17, 2013
In the right column, four images confirm the successful in vivo reprogramming of somatic liver cells (blue) into stem cells (pink), versus a control (left column). Credit: JoVE, the Journal of Visualized Experiments

Today, December 17, JoVE, the Journal of Visualized Experiments, has published a novel technique that could resolve a snag in stem cell research for application in regenerative medicine—a strategy for reprograming cells in vivo to act like stem cells that forgoes the risk of causing tumors.

Dr. Kostas Kostarelos, principal investigator of the Nanomedicine Lab at the University of Manchester, said that he and his colleagues have discovered a safe approach to reprogramming somatic cells (which constitute most of the cells in the body) into induced pluripotent stem (iPS) cells. Research in this field has been embraced as an alternative to the controversial use of .

"We have induced somatic cells within the liver of adult mice to transiently behave as pluripotent ," said Dr. Kostas Kostarelos, the lab's principal investigator, "This was done by transfer of four specific genes, previously described by the Nobel-prize winning Shinya Yamanaka, without the use of viruses but simply plasmid DNA [a small circular, double-stranded piece of DNA used for manipulating gene expression in a cell]."

The technique comes as an alternative to Dr. Shinya Yamanaka's reprograming methods, which won him the Nobel prize in 2012. Dr. Yamanaka's approach involved reprogramming somatic cells in vitro by introducing four genes through the use of a virus. While promising, the use of this method has been limited. As Dr. Kostarelos's article states, "One of the central dogmas of this emerging field is that in vivo implantation of [these stem] cells will lead to their uncontrolled differentiation and the formation of a tumor-like mass."

This video is not supported by your browser at this time.
This is the JoVE video article, "In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors." Credit: JoVE, the Journal of Visualized Experiments

Dr. Kostarelos and his team have determined that their technique does not share the risk of uncontrolled stem cell growth into tumors as seen in in vitro, viral-based methods. "[This is the] only experimental technique to report the in vivo reprogramming of adult to pluripotency using non-viral, transient, rapid and safe methods," Kostarelos said.

The Nanomedicine Lab's approach involves injecting large volumes of plasmid DNA to reprogram cells. However, because plasmid DNA is short-lived in this scenario, the risk of uncontrolled growth is reduced.

The research group chose to publish their technique with JoVE as a means to emphasize the novelty, uniqueness and simplicity of their procedure. Along with their article, a demonstration of their technique has been published as a peer-reviewed video to ensure the proper replication of this by other researchers in the field.

Explore further: Researchers discover key molecule for stem cell pluripotency

Related Stories

Novel technique to produce stem cells from peripheral blood

November 1, 2012

Stem cells are a valuable resource for medical and biological research, but are difficult to study due to ethical and societal barriers. However, genetically manipulated cells from adults may provide a path to study stem ...

Test to improve stem cell safety

June 4, 2013

CSIRO scientists have developed a test to identify unsafe stem cells. It is the first safety test specifically for human induced pluripotent stem cells (iPS) – as published today in the international journal Stem Cells.

Embryonic stem cells produced in living adult organisms

September 11, 2013

A team from the Spanish National Cancer Research Centre (CNIO) has become the first to make adult cells from a living organism retreat in their evolutionary development to recover the characteristics of embryonic stem cells.

Stem cell reprogramming made easier

September 18, 2013

Weizmann Institute scientists show that removing one protein from adult cells enables them to efficiently turn back the clock to a stem-cell-like state.

Recommended for you

New insight into leaf shape diversity

November 24, 2015

Many of us probably remember the punnett squares by which we were introduced to the idea of genetic inheritance in school: a dominant allele in each of my brown-eyed parents hides a recessive allele that explains my blue ...

The (fish) eyes have it

November 24, 2015

Understanding how fish "see" is helping a team of international scientists increase their knowledge of the Great Barrier Reef's biodiversity.

Winter season reverses outcome of fruit fly reproduction

November 24, 2015

Male fruit flies could find their chances of fathering offspring radically reduced if they are last in the queue to mate with promiscuous females before winter arrives, according to new University of Liverpool research.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 17, 2013
The article is good. The accompanying video is fantastic!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.