New hope for stem cells, regenerative medicine emerges from the lab

Dec 17, 2013
In the right column, four images confirm the successful in vivo reprogramming of somatic liver cells (blue) into stem cells (pink), versus a control (left column). Credit: JoVE, the Journal of Visualized Experiments

Today, December 17, JoVE, the Journal of Visualized Experiments, has published a novel technique that could resolve a snag in stem cell research for application in regenerative medicine—a strategy for reprograming cells in vivo to act like stem cells that forgoes the risk of causing tumors.

Dr. Kostas Kostarelos, principal investigator of the Nanomedicine Lab at the University of Manchester, said that he and his colleagues have discovered a safe approach to reprogramming somatic cells (which constitute most of the cells in the body) into induced pluripotent stem (iPS) cells. Research in this field has been embraced as an alternative to the controversial use of .

"We have induced somatic cells within the liver of adult mice to transiently behave as pluripotent ," said Dr. Kostas Kostarelos, the lab's principal investigator, "This was done by transfer of four specific genes, previously described by the Nobel-prize winning Shinya Yamanaka, without the use of viruses but simply plasmid DNA [a small circular, double-stranded piece of DNA used for manipulating gene expression in a cell]."

The technique comes as an alternative to Dr. Shinya Yamanaka's reprograming methods, which won him the Nobel prize in 2012. Dr. Yamanaka's approach involved reprogramming somatic cells in vitro by introducing four genes through the use of a virus. While promising, the use of this method has been limited. As Dr. Kostarelos's article states, "One of the central dogmas of this emerging field is that in vivo implantation of [these stem] cells will lead to their uncontrolled differentiation and the formation of a tumor-like mass."

This video is not supported by your browser at this time.
This is the JoVE video article, "In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors." Credit: JoVE, the Journal of Visualized Experiments

Dr. Kostarelos and his team have determined that their technique does not share the risk of uncontrolled stem cell growth into tumors as seen in in vitro, viral-based methods. "[This is the] only experimental technique to report the in vivo reprogramming of adult to pluripotency using non-viral, transient, rapid and safe methods," Kostarelos said.

The Nanomedicine Lab's approach involves injecting large volumes of plasmid DNA to reprogram cells. However, because plasmid DNA is short-lived in this scenario, the risk of uncontrolled growth is reduced.

The research group chose to publish their technique with JoVE as a means to emphasize the novelty, uniqueness and simplicity of their procedure. Along with their article, a demonstration of their technique has been published as a peer-reviewed video to ensure the proper replication of this by other researchers in the field.

Explore further: Test to improve stem cell safety

Provided by The Journal of Visualized Experiments

4 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Test to improve stem cell safety

Jun 04, 2013

CSIRO scientists have developed a test to identify unsafe stem cells. It is the first safety test specifically for human induced pluripotent stem cells (iPS) – as published today in the international journal Stem Cells.

Embryonic stem cells produced in living adult organisms

Sep 11, 2013

A team from the Spanish National Cancer Research Centre (CNIO) has become the first to make adult cells from a living organism retreat in their evolutionary development to recover the characteristics of embryonic ...

Stem cell reprogramming made easier

Sep 18, 2013

Weizmann Institute scientists show that removing one protein from adult cells enables them to efficiently turn back the clock to a stem-cell-like state.

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

winthrom
not rated yet Dec 17, 2013
The article is good. The accompanying video is fantastic!

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...