Malaria drug target raises hopes for new treatments

Dec 22, 2013

Scientists have taken an important step towards new malaria treatments by identifying a way to stop malaria parasites from multiplying.

In a study published in Nature Chemistry, they show that blocking the activity of an enzyme called NMT in the most common malaria parasite prevents mice from showing symptoms and extends their lifespan. The team are working to design molecules that target NMT more potently, and hope to start of potential treatments within four years.

A recent study estimated that 1.2 million people died from malaria in 2010. Although a variety of antimalarial drugs are available, some strains of the parasite are resistant to treatment. These strains are becoming more common, with treatment failures reported across multiple frontline drugs. If acute illness is cured, the parasite can remain dormant in the blood and return to cause illness later. Malaria vaccines have been researched intensively, but none have been introduced into clinical practice.

The new study shows that NMT is involved in a wide range of essential processes in the parasite cell, including the production of proteins that enable malaria to be transmitted between humans and mosquitoes, and proteins that enable malaria to cause long-term infection.

The researchers have tested a handful of molecules that block the activity of NMT in the parasite living inside human red blood cells, and in mice, but further refinement will be needed before a treatment is ready to be tested in humans.

Dr Ed Tate, from the Department of Chemistry at Imperial College London, who led the project, said: "The drug situation for malaria is becoming very serious. Resistance is emerging fast and it's going to be a huge problem in the future.

"Finding an enzyme that can be targeted effectively in malaria can be a big challenge. Here, we've shown not only why NMT is essential for a wide range of important processes in the parasite, but also that we can design molecules that stop it from working during infection. It has so many functions that we think blocking it could be effective at preventing long-term disease and transmission, in addition to treating acute . We expect it to work not just on Plasmodium falciparum, the most common , but the other species as well.

"We need to do some more work in the lab to find the best candidate molecule to take into clinical trials, but hopefully we'll be ready to do that within a few years."

Explore further: Scientists discover chemical modification in human malaria parasite DNA

More information: M.H. Wright et al. 'Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach.' Nature Chemistry, 2013. dx.doi.org/10.1038/nchem.1830

Related Stories

Australian researchers close in on malaria vaccine

Jul 02, 2013

Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.

Recommended for you

Amino acids key to new gold leaching process

Oct 24, 2014

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Researchers create designer 'barrel' proteins

Oct 23, 2014

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

User comments : 0