Dual catalysts help synthesize alpha-olefins into new organic compounds

Dec 19, 2013

Boston College chemists have developed a new chemical synthesis methodology that converts chemicals known as alpha-olefins into new organic compounds. By combining a pair of catalytic reactions in sequence, the researchers converted inexpensive and plentiful chemicals into new boron-containing organic compounds prized by researchers.

The team reports in the current online edition of the journal Nature that their advance employed two – one developed in their Boston College lab and another developed by colleagues at MIT. Combining the two reactions in a sequential process resulted in an unprecedented reaction that offered high levels of purity and selectivity, according to the lead researcher, Boston College Professor of Chemistry James P. Morken.

"We developed the first reaction to convert alpha-olefins into new compounds," said Morken. "The second reaction is a palladium-catalyzed reaction that uses a catalyst developed by a team at MIT. Together, these two reactions result in an unprecedented reaction process that works extremely well."

Organic chemists face the challenge of developing new compounds, such as medicines and materials, in a more efficient manner. A driving influence is to produce innovative compounds through simpler, more efficient processes that generate less waste and reduce costs, in particular through the use of readily available chemicals.

The team was surprised by the high level of reactivity in the boron-containing compounds from the first reaction, Morken said. The findings considerably expand the applications of alpha-olefins, a group of distinguished by having a double bond at the primary, or alpha, position of their structure. While alpha-olefins are naturally occurring feedstocks that are usually converted into plastics, the increased reactivity that results from adding two boron atoms makes them suitable for wider range of research applications.

Morken said the new methodology should allow for the rapid and efficient production of important compounds from raw chemical feedstocks. As an example, the team used the new process to convert propene gas into phenethylamines, which are an important class of therapeutics, Morken said. In another application, the team used this new method of catalytic reactions to convert another alpha-olefin into pregabalin, which has been used in a variety of pain management drugs.

Morken conducted the research with doctoral students Scott Mlynarski and Chris Schuster, both co-authors of the Nature report.

Explore further: Unexpected bond formation of chemical element boron

Related Stories

Unexpected bond formation of chemical element boron

Nov 20, 2013

In synthetic chemistry, so-called element-element bonding can be systematically exploited to assemble small building blocks to obtain structures that are more complex than the "starting material" and can ...

Sustainable new catalysts fueled by a single proton

Feb 13, 2013

Chemists at Boston College have designed a new class of catalysts triggered by the charge of a single proton, the team reports in the most recent edition of the journal Nature. The simple organic molecules offer a sustai ...

Cheap metals can be used to make products from petroleum

Oct 21, 2013

The ancient alchemists sought to transform base metals, like lead, into precious gold. Now a new process developed at the University of Illinois at Chicago suggests that base metals may be worth more than their weight in ...

Recommended for you

Triplet threat from the sun

8 hours ago

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0