Cosmic alcohol once again confirms the constancy of a natural constant

December 4, 2013
FOM PhD researcher Bagdonaite and FOM workgroup leader Ubachs visiting ALMA on the Chajnantor plateau in Chile. ALMA detected a methanol absorption line at 261 GHz. Credit: Fundamental Research on Matter (FOM)

( —A research team led by FOM workgroup leader Prof. Dr. Wim Ubachs and Dr. Rick Bethlem has once again demonstrated that the mass ratio between electrons and protons has remained the same over the past 7.5 billion years. The group, which published this conclusion last January in Science, has recently performed a wide range of measurements that confirm their earlier finding. The new results are published on 4 December in Physical Review Letters.

The mass of a proton is 1836.152672 times as big as the mass of an electron. That ratio, and with it the structure of all molecular material, has remained precisely the same for 7.5 billion years – at least within a margin of 100,000th of a percent. Ubachs and his colleagues concluded that when they observed methanol molecules outside the Milky Way last year, using the Effelsberg radio telescope.

Cosmic alcohol

Methanol (CH3OH, the simplest form of alcohol) is sensitive to changes in the proton-electron mass ratio. A small deviation would affect the structure of the molecule and the associated . An absorption reveals precisely which radiation frequencies are absorbed by a particle. Each molecule has its own characteristic spectrum. The spectrum of methanol was found to be ideally suited for analysing the natural constant: if the proton-electron mass ratio changes, some lines in the methanol spectrum will strongly shift while others will remain the same (the so-called anchor lines).

Last year the researchers analysed the spectrum of methanol molecules in a different galaxy. As the molecules are so far away, it takes a long time before their radiation reaches the Earth. In effect, the researchers were therefore looking back in time at how methanol looked 7.5 billion years ago. They saw that the 'old methanol' has a comparable spectrum to the modern methanol.

Additional measurements

The researchers have now made additional measurements using the Effelsberg radio telescope (Germany), the IRAM-30-telescope (Granada, Spain) and the new ALMA Observatory in Andes, on the Chilean-Bolivian border. As water vapour in the atmosphere disrupts the measurements at high frequencies, the researchers had to perform the measurements at these high and dry locations. While the measurements in Germany were limited to radio frequencies up to 35 gigahertz (GHz), the IRAM radio telescope observed absorption lines at 83 GHz and 160 GHz. The ALMA Observatory, about 5 km above sea level situated in the dry Atacama Desert, could even measure an absorption line at 261 GHz.

During the new research, the physicists also discovered that the direction of the radiation originating from the radio source, which is absorbed by the methanol, undergoes changes. Furthermore, they discovered that the temperature distribution of the gas cloud in which the is located exerts an influence on the absorption. Thanks to the new measurements, Ubachs and his colleagues could now see sufficient spectral lines to filter the aforementioned effects out of the results.

On the basis of the ten absorption lines observed, the researchers could make an improved statistical analysis. All confirm that the proton-electron has indeed remained constant.

The research was carried out by FOM workgroup leader prof.dr. Wim Ubachs and FOM PhD researchers Julija Bagdonaite and Mario Dapra (all at VU University Amsterdam), in collaboration with colleagues at the VU University Amsterdam, the Max Planck Institute in Bonn and the Onnsala Observatory in Sweden.

Explore further: Measuring fundamental constants with methanol

More information: Robust Constraint on a Drifting Proton-to-Electron Mass Ratio at z = 0.89 from Methanol Observation at Three Radio Telescopes, Physical Review Letters, 4 December 2013.

Related Stories

Measuring fundamental constants with methanol

June 14, 2011

Key to the astronomical modeling process by which scientists attempt to understand our universe, is a comprehensive knowledge of the values making up these models. These are generally measured to exceptionally high confidence ...

Alcohol constrains physical constant in the early universe

December 13, 2012

(—Radio-astronomical observations of a distant galaxy indicate that the ratio of the proton's mass to that of the electron has hardly changed over cosmic history. This fundamental constant of nature has changed ...

ALMA discovers large 'hot' cocoon around a small baby star

October 4, 2013

International research team, led by researcher at the University of Electro-Communication observed an infrared dark cloud G34.43+00.24 MM3 with ALMA and discovered a baby star surrounded by a large hot cloud. This hot cloud ...

Explosive growth of young star

December 4, 2013

A star is formed when a large cloud of gas and dust condenses and eventually becomes so dense that it collapses into a ball of gas, where the pressure heats the matter, creating a glowing gas ball – a star is born. New ...

Recommended for you

Galaxies show appetite for growth

August 4, 2015

The extent to which galaxies consume one another has been revealed in research. Findings from the study help to explain how galaxies such as the Milky Way were formed.

Will SETI's unprecedented new program finally find E.T.?

August 4, 2015

Stephen Hawking, Frank Drake and dozens of journalists gathered at the Royal Society in London last week to hear astronomers announce a ground-breaking new project to search for intelligent extraterrestrial life called "Breakthrough ...

Tracking a mysterious group of asteroid outcasts

August 4, 2015

High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne (pronounced you-FROH-seh-nee) ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Dec 05, 2013

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.