New chip provides better bioimaging performance

Dec 04, 2013
Bioimaging: New chip provides better all-round performance
A polygon-shaped pyramidal reflector on a silicon microelectromechanical system (MEMS) chip that allows full circumferential diagnostic imaging. Credit: A*STAR Institute of Microelectronics

A microelectromechanical system developed in Singapore provides the 360-degree view that is critical in diagnostic imaging.

Small optical devices are important for in the body; they serve, for example, as optical probes in blood vessels or the gastrointestinal tract. For accurate diagnosis, such applications require a 360-degree view of their environment. A microelectromechanical developed by researchers from the A*STAR Institute of Microelectronics, Singapore, in collaboration with colleagues from the National University of Singapore, offers a feasible solution for in vivo diagnostics. The chip can rotate scanning laser beams by almost a full turn at high speed.

Scientists are widely investigating the (MEMS) used by the researchers in Singapore, with the aim of adding complex functionality to optical or mechanical applications. Typically, these systems are complex structures, such as movable parts or mirrors that are edged into a silicon chip. Their small size makes MEMS devices ideal for circumferential diagnostic imaging systems. The small scanning angles, however, limited earlier attempts to fabricate such devices. The difficulty arose from the inability to fully utilize standard MEMS-based actuators and their linear movements for rotational devices.

The important advance in the device's design is the implementation of a new reflector for the scanning laser, notes Xiaojing Mu from the research team. "We have designed a pyramidal polygon reflector as the key component to realize full circumferential scanning," says Mu. "The reflector is placed on a sophisticated structure that translates the linear movement of the electrostatic actuators into the large rotational motion of the reflector."

In the new design, the pyramidal reflector (see image) is mounted on a small ring. Four electrostatic actuators on the side of the device rotate this ring by about 40 degrees, which, combined with the eight facets of the pyramid, means that an almost full circumferential area is covered by a laser illuminating the pyramid. Because the actuators only use electrical fields to create movement via electrostatic repulsion, almost no electrical current is used. As such, the device consumes very little power and generates no heat, which makes it compatible for medical applications inside the body.

Although the present design represents a strong demonstration of the operating principle, further improvements will be needed, according to Mu. "Unfortunately, so far, the pyramidal polygon cannot be fabricated by the traditional MEMS semiconductor process. Thus, we are seeking alternative production strategies." Nevertheless, with the help of MEMS or even smaller devices on the nanoscale, there is increasing potential for realizing more sophisticated medical diagnostics for use in the human body.

Explore further: A boost for medical imaging

More information: Mu, X., Zhou, G., Yu, H., Tsai, J. M.-L., Neo, W. K. et al. Electrostatic micromachined resonating micro-scanner for circumferential endoscopic bio-imaging. IEEE Photonics Technology Letters 25, 749–752 (2013).

add to favorites email to friend print save as pdf

Related Stories

A boost for medical imaging

Nov 06, 2013

The A*STAR Institute of Microelectronics and nanoX Imaging Ltd join forces to develop a new medical X-ray imaging detector.

Micromirror technology for smartphones

Jul 16, 2013

With consumers using smartphones as a mobile entertainment centre, the ability to project photos and videos on any surface may soon become the norm.

Tiny sensors put the squeeze on light

Oct 24, 2013

Microelectromechanical systems, known as MEMS, are ubiquitous in modern military systems such as gyroscopes for navigation, tiny microphones for lightweight radios, and medical biosensors for assessing the ...

Recommended for you

Augmented reality helps in industrial troubleshooting

14 hours ago

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

3D printed nose wins design award

Aug 27, 2014

A Victoria University of Wellington design student is the New Zealand finalist for the James Dyson Award 2014 for his Master's project—a 3D printed prosthetic nose.

User comments : 0