Researchers develop fast, sensitive nanophotonic motion sensor developed for silicon microdevices

September 20, 2012
Researchers develop fast, sensitive nanophotonic motion sensor developed for silicon microdevices
False-color scanning electron micrograph of a nanophotonic motion sensor. Vertical motion of the silicon nitride ring (pink) changes an evanescent light field of the silicon disk optical cavity (beige) a few hundred nanometers below it.

(Phys.org)—Using a microscopic optical sensor that can be batch-fabricated on a silicon chip at low cost, researchers from the NIST Center for Nanoscale Science and Technology have measured the mechanical motion between two nanofabricated structures with a precision close to the fundamental limit imposed by quantum mechanics.

Combining a (MEMS) with a sensitive optical resonator that can be accessed using conventional optical fibers, the device provides a model for dramatically improving MEMS-based sensors such as accelerometers, gyroscopes, and cantilevers for . Traditional MEMS sensors depend on integrated electrostatic transducers with slow response times and low signal-to-noise ratios, and most scientific instruments that detect motion use bulky optics that require costly instrumentation, careful alignment, and mechanical isolation.

To overcome these difficulties, the researchers created a highly sensitive position detector that relies on a silicon microdisk optical cavity that is only ten micrometers in diameter and has a similarly-sized silicon nitride ring suspended a few hundred nanometers above it. The proximity allows the evanescent light at the surface of the disk to interact with the ring, and changes in the strength of this interaction can be used to measure changes in the distance between them. The cavity has a high optical quality factor, meaning that light from an can make several thousand round-trips in the cavity before leaking out, accumulating information about the ring's position with each round-trip. The cavity's very sharp optical resonance, combined with the high sensitivity of the optical mode to the disk-ring distance, enables precision displacement measurements close to the limit imposed by the quantum mechanical . By using the signal from the as an input to an electronic feedback circuit controlling a MEMS actuator that moves the ring, the researchers are able to reduce the Brownian motion of the actuator (the displacement caused by random molecular motion) by a factor of 1000.

This feedback system effectively increases the mechanical force-sensing bandwidth by more than a factor of 2000, reducing the system response time to ten microseconds. The overall device achieves a combination of speed and precision that is completely unreachable with conventional MEMS sensors. It combines extraordinary sensing performance, low power dissipation, and wide tunability with the high stability and practicality of a fully integrated silicon microsystem.

The researchers are now working to integrate these sensors and actuators into highly sensitive, stable and compact cantilever probes for atomic force microscopy.

Explore further: Researchers develop integrated nanomechanical sensor for atomic force microscopy

More information: A microelectromechanically controlled cavity optomechanical sensing system, H. Miao, K. Srinivasan, and V. Aksyuk, New Journal of Physics 14, 075015 (2012). dx.doi.org/10.1088/1367-2630/14/7/075015

Related Stories

Microtechnology: An alignment assignment

January 21, 2011

Microelectromechanical systems (MEMS), which consist of tiny moving parts driven by electrical signals, have found ready applications in optical communication systems. They are attractive in part because they can be integrated ...

Quantum-limited Measurement Method for Nanosensors

October 14, 2009

(PhysOrg.com) -- (PhysOrg.com) -- A team of scientists from the Max Planck Institute of Quantum Optics and the Ludwig Maximilians University have succeeded in applying a novel optical method to nano-mechanical oscillators. ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.