Key protein responsible for controlling communication between brain cells identified

Nov 27, 2013

Scientists are a step closer to understanding how some of the brain's 100 billion nerve cells co-ordinate their communication. The study is published today in the journal Cell Reports.

The University of Bristol research team investigated some of the that underpin how co-ordinate their communication. Defects in this communication are associated with disorders such as epilepsy, autism and schizophrenia, and therefore these findings could lead to the development of novel neurological therapies.

Neurons in the brain communicate with each other using chemicals called neurotransmitters. This release of from neurons is tightly controlled by many different proteins inside the neuron. These proteins interact with each other to ensure that neurotransmitter is only released when necessary. Although the mechanisms that control this release have been extensively studied, the processes that co-ordinate how and when the component proteins interact is not fully understood.

The School of Biochemistry researchers have now discovered that one of these proteins called 'RIM1α' is modified by a small protein named 'SUMO' which attaches to a specific region in RIM1α. This process acts as a 'molecular switch' which is required for normal neurotransmitter release.

Jeremy Henley, Professor of Molecular Neuroscience in the University's Faculty of Medical and Veterinary Sciences and the study's lead author, said: "These findings are important as they show that SUMO modification plays a vital and previously unsuspected role in normal brain function."

The research builds on the team's earlier work that identified a group of proteins in the brain responsible for protecting from damage and could be used in future for therapies for stroke and other brain diseases.

Explore further: Researchers describe structure of the largest protein complex in the respiratory chain

Related Stories

SUMO wrestling in the brain

May 07, 2007

Increasing the amount of SUMO, a small protein in the brain, could be a way of treating diseases such as epilepsy and schizophrenia, reveal scientists at the University of Bristol, UK. Their findings are published online ...

Recommended for you

Cellular memory of stressful situations

3 hours ago

Stress is unhealthy. The cells use therefore a variety of mechanisms to deal with stress and avert its immediate threat. However, certain stressful situations leave marks that go beyond the immediate response; ...

Researchers identify new mechanism to aid cells under stress

Jan 26, 2015

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Researchers image and measure tubulin transport in cilia

Jan 26, 2015

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.