Key protein responsible for controlling communication between brain cells identified

Nov 27, 2013

Scientists are a step closer to understanding how some of the brain's 100 billion nerve cells co-ordinate their communication. The study is published today in the journal Cell Reports.

The University of Bristol research team investigated some of the that underpin how co-ordinate their communication. Defects in this communication are associated with disorders such as epilepsy, autism and schizophrenia, and therefore these findings could lead to the development of novel neurological therapies.

Neurons in the brain communicate with each other using chemicals called neurotransmitters. This release of from neurons is tightly controlled by many different proteins inside the neuron. These proteins interact with each other to ensure that neurotransmitter is only released when necessary. Although the mechanisms that control this release have been extensively studied, the processes that co-ordinate how and when the component proteins interact is not fully understood.

The School of Biochemistry researchers have now discovered that one of these proteins called 'RIM1α' is modified by a small protein named 'SUMO' which attaches to a specific region in RIM1α. This process acts as a 'molecular switch' which is required for normal neurotransmitter release.

Jeremy Henley, Professor of Molecular Neuroscience in the University's Faculty of Medical and Veterinary Sciences and the study's lead author, said: "These findings are important as they show that SUMO modification plays a vital and previously unsuspected role in normal brain function."

The research builds on the team's earlier work that identified a group of proteins in the brain responsible for protecting from damage and could be used in future for therapies for stroke and other brain diseases.

Explore further: SUMO wrestling cells reveal new protective mechanism target for stroke

Related Stories

SUMO wrestling in the brain

May 07, 2007

Increasing the amount of SUMO, a small protein in the brain, could be a way of treating diseases such as epilepsy and schizophrenia, reveal scientists at the University of Bristol, UK. Their findings are published online ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...