Important clue to how the circulatory system is wired

Nov 25, 2013
Most of the experiments in the current paper in PNAS (Bräutigam et al., Nov. 2013) were conducted in zebrafish that were genetically modified, so that the circulatory system glowed in a green fluorescent colour. In this image a two days old fluorescent zebrafish. Credit: Lars Bräutigam

A new mechanism that regulates the way blood vessels grow and connect to each other has been discovered by an international team of researchers at Karolinska Institutet in Sweden, and Heinrich Heine University Düsseldorf, Germany. The knowledge might open up new opportunities for future cancer therapy. The study is published in the scientific journal PNAS.

If stretched out, the in a human body would reach more than twice around the earth. The complex circulatory system nourishes every cell of our body and proper development of new blood vessels is crucial for embryonic development.

In the current study, the scientists demonstrated for the first time that the enzyme glutaredoxin 2 has an essential role during cardiovascular development. Glutaredoxin 2 belongs to a family of enzymes that convey specific signals within cells. In previous studies, the same researchers have shown that glutaredoxin 2 is indispensable for nerve cell survival during embryonic brain development.

To reduce the number of laboratory mice used, the team was running most of their experiments in zebrafish that were genetically modified so that the circulatory system glowed in a green fluorescent colour. As the young zebrafish is completely transparent, the scientists could follow the growth of the fluorescent blood vessels directly under the microscope. When levels of glutaredoxins were reduced, the blood vessels of the zebrafish embryos were growing randomly without establishing a proper circulatory system. The researchers found that glutaredoxin 2 controls a chemical switch in another protein, sirtuin 1, and that this simple modification of a single amino acid is vital for the circulatory system to develop normally

This knowledge is not only essential to better understand development of our in general. Growth of new blood vessels, a process called angiogenesis, also plays a crucial role in the pathology of many diseases, including cancer. The ability to promote angiogenesis is a hallmark of cancer, since growing tumours and metastasis are dependent on vessel formation.

"The understanding how blood vessels develop and how this process can be modulated, can provide a new way to fight cancer in the future", says first study author Lars Bräutigam, at the Department of Medical Biochemistry and Biophysics of Karolinska Institutet and also affiliated with the Science for Life Laboratory (SciLifeLab) in Stockholm, Sweden.

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information: 'Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin', Lars Bräutigam, Lasse Dahl Ejby Jensen, Gereon Poschmann, Staffan Nyströma, Sarah Bannenberg, Kristian Dreij, Klaudia Lepka, Timour Prozorovsk, Sergio J. Montano, Orhan Aktas, Per Uhlén, Kai Stühler, Yihai Cao, ArneHolmgren, and Carsten Berndt, Proceedings of the National Academy of Sciences (PNAS), online 25-29 November 2013. www.pnas.org/cgi/doi/10.1073/pnas.1313753110

Related Stories

Cholesterol sets off chaotic blood vessel growth

May 29, 2013

A study at the University of California, San Diego School of Medicine identified a protein that is responsible for regulating blood vessel growth by mediating the efficient removal of cholesterol from the ...

Blueprint for blood vessel fusion discovered

Jun 11, 2013

The fusion of blood vessels during the formation of the vascular system follows a uniform process. In this process, the blood vessels involved go through different phases of a common choreography, in which ...

Tumor blood vessels prevent the spread of cancer cells

Feb 11, 2013

A lack of the protein endoglin in the blood vessels of tumour-bearing mice enables the spread of daughter tumours, according to researchers at Karolinska Institutet and Lund University in Sweden in a study published in the ...

Protein responsible for 'bad' blood vessel growth discovered

Jul 17, 2013

The discovery of a protein that encourages blood vessel growth, and especially 'bad' blood vessels – the kind that characterise diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis – ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.