Creatures of influence: New model identifies critical species in food webs and social networks

November 5, 2013

In the children's game "Jenga", removing the wrong block from a tower of wooden blocks can cause the entire tower to collapse. In the same way, removing certain species from an ecosystem can cause a collapse in ecological function. A common scientific question has been to identify these critical species in different ecosystems and an international research team has developed mathematical tools that can estimate which species are most influential in a food web.

The researchers from the University of Bristol, the Max Planck Institute for Physics of Complex Systems and the US Geological Survey have taken a new modeling approach to the question. The team, using the new mathematical tools, found that long-lived, generalist top predators—such as otters— play the most influential roles within a food web. The findings are published today in Proceedings of the Royal Society B.

Helge Aufderheide of the Max Planck Institute and University of Bristol, who led the research, said: "The interactions in an ecosystem are so complex that one can often only guess about the roles that each species plays. Therefore, knowing how to find the key players makes all the difference for understanding where to focus studies."

Long-lived, generalist top predators can highly influence ecosystems because they feed on different types of prey that occupy different parts of the food web. For example, otters feed on a wide variety of aquatic prey and can influence multiple species throughout the course of their relatively long lifespan. Removing otters from the ecosystem would cause long-term disruptions to all those species, a theory that the new models can now confirm for other species and ecosystems.

Understanding how the gain or loss of a single species affects a complex food web has been a difficult mathematical challenge, and the new findings provide fundamental insights into complex natural systems. The new study offers a rule of thumb to help other studies focus their research and data collection on in order of their expected importance, and increase the efficiency of their research effort.

Kevin Lafferty, an author of the paper from USGS, said: "As a biologist who studies , I'm hopeful that we can use this approach to help focus our field work."

The new approach has non-ecological applications as well. Even though the research team applied the computational tools on food webs, their approach also can be applied to other types of —from electricity grids to online social networks—to identify influential components.

Explore further: Scientists find universal rules for food-web stability

More information: Predicting community responses in the face of imperfect knowledge and network complexity by Helge Aufderheide, Lars Rudolf, Thilo Gross, and Kevin D. Lafferty, Proceedings of the Royal Society B, 6 November 2013.

Related Stories

Scientists find universal rules for food-web stability

August 6, 2009

The findings, published in this week's issue of Science, conclude that food-web stability is enhanced when many diverse predator-prey links connect high and intermediate trophic levels. The computations also reveal that small ...

A new model for understanding biodiversity

November 21, 2011

( -- Animals like foxes and raccoons are highly adaptable. They move around and eat everything from insects to eggs. They and other "generalist feeders" like them may also be crucial to sustaining biological diversity, ...

Drawing connections between food webs

April 4, 2012

Ecosystems today face various threats, from climate change to invasive species to encroaching civilization. If we hope to protect these systems and the species that live in them, we must understand them — an extremely ...

Do parasites upset food web theory?

June 11, 2013

Parasites comprise a large proportion of the diversity of species in every ecosystem. Despite this, they are rarely included in analyses or models of food webs. If parasites play different roles from other predators and prey, ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.